1932

Abstract

Wind energy is recognized worldwide as cost-effective and environmentally friendly, and it is among the fastest-growing sources of electrical energy. To further decrease the cost of wind energy, wind turbines are being designed at ever-larger scales. To expand the deployment of wind energy, wind turbines are also being designed on floating platforms for placement in deep-water locations offshore. Both larger-scale and floating wind turbines pose challenges because of their greater structural loads and deflections. Complex, large-scale systems such as modern wind turbines increasingly require a control co-design approach, whereby the system design and control design are performed in a more integrated fashion. This article reviews recent developments in control co-design of wind turbines. We provide an overview of wind turbine design objectives and constraints, issues in the design of key wind turbine components, modeling of the wind turbine and environment, and controller coupling issues. Wind turbine control functions and the integration of control design in co-design are detailed with a focus on co-design compatible control approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061423-101708
2024-07-10
2025-03-05
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Martins JRRA, Ning A. 2021.. Engineering Design Optimization. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Gray JS, Hwang JT, Martins JRRA, Moore KT, Naylor BA. 2019.. OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization. . Struct. Multidiscip. Optim. 59:(4):1075104
    [Crossref] [Google Scholar]
  3. 3.
    Garcia-Sanz M. 2019.. Control co-design: an engineering game changer. . Adv. Control Appl. 1:(1):e18
    [Crossref] [Google Scholar]
  4. 4.
    Livne E. 1999.. Integrated aeroservoelastic optimization: status and direction. . J. Aircraft 36:(1):12245
    [Crossref] [Google Scholar]
  5. 5.
    Abbas NJ, Zalkind DS, Pao LY, Wright A. 2022.. A reference open-source controller for fixed and floating offshore wind turbines. . Wind Energy Sci. 7:(1):5373
    [Crossref] [Google Scholar]
  6. 6.
    Zalkind DS, Dall'Anese E, Pao LY. 2020.. Automatic controller tuning using a zeroth-order optimization algorithm. . Wind Energy Sci. 5:(4):1579600
    [Crossref] [Google Scholar]
  7. 7.
    Patil R, Filipi Z, Fathy H. 2012.. Computationally efficient combined plant design and controller optimization using a coupling measure. . J. Mech. Des. 134:(7):071008
    [Crossref] [Google Scholar]
  8. 8.
    Allison JT, Herber DR. 2014.. Multidisciplinary design optimization of dynamic engineering systems. . AIAA J. 52:(4):691710
    [Crossref] [Google Scholar]
  9. 9.
    Herber DR, Allison JT. 2019.. Nested and simultaneous solution strategies for general combined plant and control design problems. . J. Mech. Des. 141:(1):011402
    [Crossref] [Google Scholar]
  10. 10.
    Fathy HK, Reyer JA, Papalambros PY, Ulsoy AG. 2001.. On the coupling between the plant and controller optimization problems. . In Proceedings of the 2001 American Control Conference, Vol. 3, pp. 186469. Piscataway, NJ:: IEEE
    [Google Scholar]
  11. 11.
    Pao LY, Zalkind DS, Griffith DT, Chetan M, Selig MS, et al. 2021.. Control co-design of 13 MW downwind two-bladed rotors to achieve 25% reduction in levelized cost of wind energy. . Annu. Rev. Control 51::33143
    [Crossref] [Google Scholar]
  12. 12.
    Stehly T, Duffy P. 2022.. 2021 cost of wind energy review. Tech. Rep. , US Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  13. 13.
    Beiter P, Rand JT, Seel J, Lantz E, Gilman P, Wiser R. 2022.. Expert perspectives on the wind plant of the future. . Wind Energy 25:(8):136378
    [Crossref] [Google Scholar]
  14. 14.
    Loth E, Qin C, Simpson JG, Dykes K. 2022.. Why we must move beyond LCOE for renewable energy design. . Adv. Appl. Energy 8::100112
    [Crossref] [Google Scholar]
  15. 15.
    Garcia-Sanz M. 2020.. A metric space with LCOE isolines for research guidance in wind and hydrokinetic energy systems. . Wind Energy 23:(2):291311
    [Crossref] [Google Scholar]
  16. 16.
    Okamura H, Sakai S, Susuki I. 1979.. Cumulative fatigue damage under random loads. . Fatigue Fract. Eng. Mater. Struct. 1:(4):40919
    [Crossref] [Google Scholar]
  17. 17.
    Int. Electrotech. Comm. 2005.. Wind turbines – part 1: design requirements. Stand. 61400-1 , Int. Electrotech. Comm., Geneva:
    [Google Scholar]
  18. 18.
    Bortolotti P, Bottasso CL, Croce A. 2016.. Combined preliminary–detailed design of wind turbines. . Wind Energy Sci. 1:(1):7188
    [Crossref] [Google Scholar]
  19. 19.
    Bortolotti P, Sucameli C, Croce A, Bottasso C. 2018.. Integrated design optimization of wind turbines with noise emission constraints. . J. Phys. Conf. Ser. 1037:(4):042005
    [Crossref] [Google Scholar]
  20. 20.
    Griffith DT, Ashwill TD. 2011.. The Sandia 100-meter all-glass baseline wind turbine blade: SNL100-00. Tech. Rep. SAND2011-3779 , Sandia Natl. Lab., Albuquerque, NM, and Livermore, CA:
    [Google Scholar]
  21. 21.
    van der Tempel J, Molenaar DP. 2003.. Wind turbine structural dynamics—a review of the principles for modern power generation, onshore and offshore. . Wind Eng. 26:(4):21122
    [Crossref] [Google Scholar]
  22. 22.
    Musial W, Spitsen P, Duffy P, Beiter P, Marquis M, et al. 2022.. Offshore wind market report: 2022 edition. Tech. Rep. DOE/GO-102022-5765, Off. Energy Effic. Renew. Energy , US Dep. Energy, Washington, DC:
    [Google Scholar]
  23. 23.
    Thiagarajan K, Dagher H. 2014.. A review of floating platform concepts for offshore wind energy generation. . J. Offshore Mech. Arctic Eng. 136:(2):020903
    [Crossref] [Google Scholar]
  24. 24.
    Hall M, Buckham B, Crawford C. 2014.. Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations. . Wind Energy 17:(12):183553
    [Crossref] [Google Scholar]
  25. 25.
    Chitteth Ramachandran R, Desmond C, Judge F, Serraris JJ, Murphy J. 2022.. Floating wind turbines: marine operations challenges and opportunities. . Wind Energy Sci. 7:(2):90324
    [Crossref] [Google Scholar]
  26. 26.
    Schwack F, Halmos F, Stammler M, Poll G, Glavatskih S. 2022.. Wear in wind turbine pitch bearings—a comparative design study. . Wind Energy 25:(4):70018
    [Crossref] [Google Scholar]
  27. 27.
    Barlas TK, van Kuik GA. 2010.. Review of state of the art in smart rotor control research for wind turbines. . Prog. Aerosp. Sci. 46:(1):127
    [Crossref] [Google Scholar]
  28. 28.
    Schlipf D, Guo F, Raach S, Lemmer F. 2023.. A tutorial on lidar-assisted control for floating offshore wind turbines. . In 2023 American Control Conference, pp. 253641. Piscataway, NJ:: IEEE
    [Google Scholar]
  29. 29.
    Johnson KE, Pao LY, Balas MJ, Fingersh LJ. 2006.. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. . IEEE Control Syst. Mag. 26:(3):7081
    [Crossref] [Google Scholar]
  30. 30.
    Pao LY, Johnson KE. 2011.. Control of wind turbines. . IEEE Control Syst. Mag. 31:(2):4462
    [Crossref] [Google Scholar]
  31. 31.
    Wright A, Fingersh L. 2008.. Advanced control design for wind turbines; part I: control design, implementation, and initial tests. Tech. Rep. TP-500-42437 , US Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  32. 32.
    Bossanyi EA. 2003.. Wind turbine control for load reduction. . Wind Energy 6:(3):22944
    [Crossref] [Google Scholar]
  33. 33.
    Fischer B, Shan M. 2013.. A survey on control methods for the mitigation of tower loads. Proj. Rep. 01/104256 , Fraunhofer Inst. Wind Energy Energy Syst. Technol., Kassel, Ger.:
    [Google Scholar]
  34. 34.
    Petrovic V, Bottasso CL. 2017.. Wind turbine envelope protection control over the full wind speed range. . Renew. Energy 111::83648
    [Crossref] [Google Scholar]
  35. 35.
    Gaertner E, Rinker J, Sethuraman L, Zahle F, Anderson B, et al. 2020.. Definition of the IEA 15-megawatt offshore reference wind turbine. Tech. Rep., NREL/TP-5000-75698 , US Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  36. 36.
    US Natl. Renew. Energy Lab. (NREL). 2023.. ROSCO. . GitHub. https://github.com/NREL/ROSCO
    [Google Scholar]
  37. 37.
    Abbas NJ, Bortolotti P, Kelley C, Paquette J, Pao LY, Johnson N. 2023.. Aero-servo-elastic co-optimization of large wind turbine blades with distributed aerodynamic control devices. . Wind Energy 26:(8):76385
    [Crossref] [Google Scholar]
  38. 38.
    Fleming PA, Pineda I, Wright AD, Arora D. 2014.. Evaluating methods for control of an offshore floating turbine. . In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, Vol. 9B: Ocean Renewable Energy, pap. V09BT09A019 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  39. 39.
    Shah KA, Meng F, Li Y, Nagamune R, Zhou Y, et al. 2021.. A synthesis of feasible control methods for floating offshore wind turbine system dynamics. . Renew. Sustain. Energy Rev. 151::111525
    [Crossref] [Google Scholar]
  40. 40.
    van der Veen GJ, Couchman IJ, Bowyer RO. 2012.. Control of floating wind turbines. . In 2012 American Control Conference, pp. 314853. Piscataway, NJ:: IEEE
    [Google Scholar]
  41. 41.
    Fischer B. 2013.. Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros. . IET Renew. Power Gener. 7:(4):41319
    [Crossref] [Google Scholar]
  42. 42.
    Stockhouse D, Pao LY. 2023.. Trade-offs in the design of multi-loop controllers for floating wind turbines. . In 2023 American Control Conference, pp. 253035. Piscataway, NJ:: IEEE
    [Google Scholar]
  43. 43.
    Stockhouse D, Pusch M, Damiani R, Sirnivas S, Pao LY. 2023.. Robust multi-loop control of a floating wind turbine. . Wind Energy. https://doi.org/10.1002/we.2864
    [Google Scholar]
  44. 44.
    Skogestad S, Postlethwaite I. 2001.. Multivariable Feedback Control: Analysis and Design. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  45. 45.
    Wilson RE, Lissaman PB. 1974.. Applied aerodynamics of wind power machines. Tech. Rep. , Or. State Univ., Corvallis:
    [Google Scholar]
  46. 46.
    Burton T, Sharpe D, Jenkins N, Bossanyi E. 2001.. Wind Energy Handbook. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  47. 47.
    Manwell J, McGowan J, Rogers A. 2010.. Wind Energy Explained: Theory, Design, and Application. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  48. 48.
    Stockhouse D, Phadnis M, Henry A, Abbas N, Sinner M, et al. 2023.. Sink or swim: a tutorial on the control of floating wind turbines. . In 2023 American Control Conference, pp. 251229. Piscataway, NJ:: IEEE
    [Google Scholar]
  49. 49.
    Larsen TJ, Hanson TD. 2007.. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. . J. Phys. Conf. Ser. 75::012073
    [Crossref] [Google Scholar]
  50. 50.
    Preumont A. 2002.. Vibration Control of Active Structures: An Introduction. Dordrecht, Neth.:: Springer
    [Google Scholar]
  51. 51.
    Shahn M. 2017.. Load reducing control for wind turbines. PhD Thesis , Univ. Kassel, Kassel, Ger.:
    [Google Scholar]
  52. 52.
    Musial W, Butterfield S, McNiff B. 2007.. Improving wind turbine gearbox reliability. Tech. Rep. NREL/CP-500-41548 , US Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  53. 53.
    WPED Contrib. 2014.. Vestas launches new upgrades to increase output of installed turbines. . Windpower Engineering and Development, May 1. https://www.windpowerengineering.com/vestas-launches-new-upgrades-increase-output-installed-turbines
    [Google Scholar]
  54. 54.
    Siemens Gamesa Renew. Energy. 2018.. Siemens Gamesa power boost function. Prod. Sheet, Siemens Gamesa Renew . Energy, Zamudio, Spain:. https://www.siemensgamesa.com/-/media/siemensgamesa/downloads/en/products-and-services/services/asset-optimization/power-boost-function.pdf
    [Google Scholar]
  55. 55.
    US Natl. Renew. Energy Lab. (NREL). 2023.. WISDEM. . GitHub. https://github.com/WISDEM/WISDEM .
    [Google Scholar]
  56. 56.
    Zahle F, Tibaldi C, Pavese C, McWilliam MK, Blasques JP, Hansen MH. 2016.. Design of an aeroelastically tailored 10 MW wind turbine rotor. . J. Phys. Conf. Ser. 753:(6):062008
    [Crossref] [Google Scholar]
  57. 57.
    Lambe AB, Martins JRRA. 2012.. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. . Struct. Multidiscip. Optim. 46::27384
    [Crossref] [Google Scholar]
  58. 58.
    van de Wal M, de Jager B. 2001.. A review of methods for input/output selection. . Automatica 37:(4):487510
    [Crossref] [Google Scholar]
  59. 59.
    Knoblach A. 2015.. Robust performance analysis for gust loads computation. PhD Thesis , Tech. Univ. Hamburg, Hamburg, Ger.:
    [Google Scholar]
  60. 60.
    Pusch M, Phadnis M, Abbas N, Stockhouse D, Pao LY. 2023.. Optimal operating points for wind turbine control and co-design. . Wind Energy. https://doi.org/10.1002/we.2879
    [Google Scholar]
  61. 61.
    Joos HD. 2002.. A multiobjective optimisation-based software environment for control systems design. . In IEEE International Symposium on Computer Aided Control System Design, pp. 714. Piscataway, NJ:: IEEE
    [Google Scholar]
  62. 62.
    Kwakernaak H, Sivan R. 1972.. Linear Optimal Control Systems. New York:: Wiley-Intersci.
    [Google Scholar]
  63. 63.
    Gilbert MG. 1990.. An analytical sensitivity method for use in integrated aeroservoelastic aircraft design. . Mech. Syst. Signal Process. 4:(3):21531
    [Crossref] [Google Scholar]
  64. 64.
    Stanford B. 2018.. Aeroservoelastic optimization under stochastic gust constraints. . In 2018 Applied Aerodynamics Conference. https://doi.org/10.2514/6.2018-2837
    [Google Scholar]
  65. 65.
    Doyle J, Glover K, Khargonekar P, Francis B. 1989.. State-space solutions to standard and control problems. . IEEE Trans. Autom. Control 34:(8):83147
    [Crossref] [Google Scholar]
  66. 66.
    Zalkind DS, Ananda GK, Chetan M, Martin DP, Bay CJ, et al. 2019.. System-level design studies for large rotors. . Wind Energy Sci. 4:(4):595618
    [Crossref] [Google Scholar]
  67. 67.
    Gupta A, Rotea MA, Chetan M, Sakib MS, Griffith DT. 2021.. A methodology for robust load reduction in wind turbine blades using flow control devices. . Energies 14:(12):3500
    [Crossref] [Google Scholar]
  68. 68.
    Balas G, Chiang R, Packard A, Safonov M. 2015.. Robust Control Toolbox for use with MATLAB®. User's Guide , MathWorks, Natick, MA:
    [Google Scholar]
  69. 69.
    Fuller S, Greiner B, Moore J, Murray R, van Paassen R, Yorke R. 2021.. The Python control systems library (python-control). . In 2021 60th IEEE Conference on Decision and Control, pp. 487581. Piscataway, NJ:: IEEE
    [Google Scholar]
  70. 70.
    Wu F. 1995.. Control of linear parameter varying systems. PhD Thesis , Univ. Calif., Berkeley:
    [Google Scholar]
  71. 71.
    Theis J, Sedlmair N, Thielecke F, Pfifer H. 2020.. Observer-based LPV control with anti-windup compensation: a flight control example. . IFAC-PapersOnLine 53:(2):732530
    [Crossref] [Google Scholar]
  72. 72.
    Apkarian P, Noll D. 2006.. Nonsmooth H synthesis. . IEEE Trans. Autom. Control 51:(1):7186
    [Crossref] [Google Scholar]
  73. 73.
    Goh KC, Safonov MG, Ly JH. 1996.. Robust synthesis via bilinear matrix inequalities. . Int. J. Robust Nonlinear Control 6:(9–10):107995
    [Crossref] [Google Scholar]
  74. 74.
    McFarlane D, Glover K. 1992.. A loop-shaping design procedure using H synthesis. . IEEE Trans. Autom. Control 37:(6):75969
    [Crossref] [Google Scholar]
  75. 75.
    Horowitz I. 1963.. Synthesis of Feedback Systems. New York:: Academic
    [Google Scholar]
  76. 76.
    Herber DR, Sundarrajan AK. 2020.. On the uses of linear-quadratic methods in solving nonlinear dynamic optimization problems with direct transcription. . In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, Vol. 7A: Dynamics, Vibration, and Control, pap. V07AT07A003. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  77. 77.
    Sundarrajan AK, Lee YH, Allison JT, Herber DR. 2021.. Open-loop control co-design of floating offshore wind turbines using linear parameter-varying models. . In Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 3A: 47th Design Automation Conference (DAC), pap. V03AT03A010. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  78. 78.
    Zalkind DS, Abbas NJ, Jasa J, Wright A, Fleming P. 2022.. Floating wind turbine control optimization. . J. Phys. Conf. Ser. 2265:(4):042021
    [Crossref] [Google Scholar]
  79. 79.
    IEA Wind Task 37 Team. 2020.. WindIO documentation. . IEA Wind Task 37. https://windio.readthedocs.io/en/latest/index.html
    [Google Scholar]
  80. 80.
    Sartori L, Bellini F, Croce A, Bottasso C. 2018.. Preliminary design and optimization of a 20MW reference wind turbine. . J. Phys. Conf. Ser. 1037:(4):042003
    [Crossref] [Google Scholar]
  81. 81.
    Boden B, Flink J, Först N, Mischke R, Schaffert K, et al. 2021.. RCE: an integration environment for engineering and science. . SoftwareX 15::100759
    [Crossref] [Google Scholar]
  82. 82.
    US Natl. Renew. Energy Lab. (NREL). 2023.. WEIS. . GitHub. https://github.com/WISDEM/WEIS
    [Google Scholar]
  83. 83.
    US Natl. Renew. Energy Lab. (NREL). 2022.. RAFT (Response Amplitudes of Floating Turbines). . GitHub. https://github.com/WISDEM/RAFT
    [Google Scholar]
  84. 84.
    US Natl. Renew. Energy Lab. (NREL). 2021.. OpenFAST. . GitHub. https://github.com/OpenFAST/openfast .
    [Google Scholar]
  85. 85.
    DTU Wind Energy. 2020.. HAWC2. . https://www.hawc2.dk
  86. 86.
    DNV. 2023.. Wind turbine design software – Bladed. . DNV. https://www.dnv.com/services/wind-turbine-design-software-bladed-3775
    [Google Scholar]
  87. 87.
    Marten D. 2023.. QBlade: next generation wind turbine design and simulation. . QBlade.org. https://qblade.org
    [Google Scholar]
  88. 88.
    MathWorks. 2023.. MATLAB. . MathWorks. https://www.mathworks.com/products/matlab.html
    [Google Scholar]
  89. 89.
    Hansen MH, Henriksen LC. 2013.. Basic DTU wind energy controller. Tech. Rep. E-0018 , Dep. Wind Energy, Tech. Univ. Den., Copenhagen:
    [Google Scholar]
  90. 90.
    Herber DR. 2019.. Optimal control direct method examples. . GitHub. https://github.com/danielrherber/optimal-control-direct-method-examples
    [Google Scholar]
  91. 91.
    Leimeister M, Thomas P. 2017.. The OneWind® Modelica library for floating offshore wind turbine simulations with flexible structures. . In Proceedings of the 12th International Modelica Conference, pp. 63342. Linköping, Swed.:: Linking Univ. Electron. Press
    [Google Scholar]
  92. 92.
    Leimeister M, Kolios A. 2021.. Reliability-based design optimization of a spar-type floating offshore wind turbine support structure. . Reliab. Eng. Syst. Saf. 213::107666
    [Crossref] [Google Scholar]
  93. 93.
    Alvarez EJ, Mehr J, Ning A. 2022.. FLOWUnsteady: an interactional aerodynamics solver for multirotor aircraft and wind energy. . In AIAA AVIATION 2022 Forum. https://doi.org/10.2514/6.2022-3218
    [Google Scholar]
  94. 94.
    Iori J, McWilliam M, Stolpe M. 2022.. Including the power regulation strategy in aerodynamic optimization of wind turbines for increased design freedom. . Wind Energy 25:(10):1791811
    [Crossref] [Google Scholar]
  95. 95.
    Zalkind DS. 2022.. Control co-design of floating wind turbines using WEIS. Paper presented at the 6th Wind Energy Systems Engineering Workshop, Boulder, CO:, Aug. 30–Sept. 1
    [Google Scholar]
  96. 96.
    Ribnitzky D, Berger F, Petrovic V, Kühn M. 2023.. Hybrid-Lambda: a low specific rating rotor concept for offshore wind turbines. . Wind Energy Sci. Discuss. https://doi.org/10.5194/wes-2023-72
    [Crossref] [Google Scholar]
  97. 97.
    Fleming P, Gebraad PMO, Lee S, van Wingerden JW, Johnson K, et al. 2015.. Simulation comparison of wake mitigation control strategies for a two-turbine case. . Wind Energy 18:(12):213543
    [Crossref] [Google Scholar]
  98. 98.
    Gebraad PMO, Teeuwisse FW, van Wingerden JW, Fleming PA, Ruben SD, et al. 2016.. Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study. . Wind Energy 19:(1):95114
    [Crossref] [Google Scholar]
  99. 99.
    Fleming P, Annoni J, Shah JJ, Wang L, Ananthan S, et al. 2017.. Field test of wake steering at an offshore wind farm. . Wind Energy Sci. 2:(1):22939
    [Crossref] [Google Scholar]
  100. 100.
    Damiani R, Dana S, Annoni J, Fleming P, Roadman J, et al. 2018.. Assessment of wind turbine component loads under yaw-offset conditions. . Wind Energy Sci. 3:(1):17389
    [Crossref] [Google Scholar]
  101. 101.
    Howland MF, Lele SK, Dabiri JO. 2019.. Wind farm power optimization through wake steering. . PNAS 116:(29):14495500
    [Crossref] [Google Scholar]
  102. 102.
    Simley E, Fleming P, King J. 2020.. Design and analysis of a wake steering controller with wind direction variability. . Wind Energy Sci. 5:(2):45168
    [Crossref] [Google Scholar]
  103. 103.
    Howland MF, Quesada JB, Martinez JJP, Larranaga FP, Yadav N, et al. 2022.. Collective wind farm operation based on a predictive model increases utility-scale energy production. . Nat. Energy 7::81827
    [Crossref] [Google Scholar]
  104. 104.
    Veers P, Bottasso C, Manuel L, Naughton J, Pao LY, et al. 2023.. Grand challenges in the design, manufacture, and operation of future wind turbine systems. . Wind Energy Sci. 8:(7):1071131
    [Crossref] [Google Scholar]
  105. 105.
    Stanley APJ, Bay CJ, Fleming P. 2023.. Enabling control co-design of the next generation of wind power plants. . Wind Energy Sci. 8:(8):134150
    [Crossref] [Google Scholar]
  106. 106.
    Qin C, Saunders G, Loth E. 2017.. Offshore wind energy storage concept for cost-of-rated-power savings. . Appl. Energy 201::14857
    [Crossref] [Google Scholar]
  107. 107.
    Mehta M, Zaayer M, von Terzi D. 2022.. Optimum turbine design for hydrogen production from offshore wind. . J. Phys. Conf. Ser. 2265::042061
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-061423-101708
Loading
/content/journals/10.1146/annurev-control-061423-101708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error