SAVED /lab/aaron-whiteley/ en Bacterial cGAS-like enzymes produce 2′,3′-cGAMP to activate an ion channel that restricts phage replication /lab/aaron-whiteley/2023/07/26/bacterial-cgas-enzymes-produce-23-cgamp-activate-ion-channel-restricts-phage-replication Bacterial cGAS-like enzymes produce 2′,3′-cGAMP to activate an ion channel that restricts phage replication Anonymous (not verified) Wed, 07/26/2023 - 10:44 Categories: Research Articles Tags: 2′3′-³¦³Ò´¡²Ñ±Ê CBASS Cap14 SAVED Saf-2TM antiphage signaling biosensor cGAS ion channel ligand-gated phage Uday Tak Peace Holguin-Walth Aaron Whiteley

BioRxiv (2023) PubMed PMID: 37546940; PubMed Central PMCID: PMC10402079.

Abstract

The mammalian innate immune system uses cyclic GMP–AMP synthase (cGAS) to synthesize the cyclic dinucleotide 2′,3′-cGAMP during antiviral and antitumor immune responses. 2′,3′-cGAMP is a nucleotide second messenger that initiates inflammatory signaling by binding to and activating the stimulator of interferon genes (STING) receptor. Bacteria also encode cGAS/DncV-like nucleotidyltransferases (CD-NTases) that produce nucleotide second messengers to initiate antiviral (antiphage) signaling. Bacterial CD-NTases produce a wide range of cyclic oligonucleotides but have not been documented to produce 2′,3′-cGAMP. Here we discovered bacterial CD-NTases that produce 2′,3′-cGAMP to restrict phage replication. Bacterial 2′,3′-cGAMP binds to CD-NTase associated protein 14 (Cap14), a transmembrane protein of unknown function. Using electrophysiology, we show that Cap14 is a chloride-selective ion channel that is activated by 2′,3′-cGAMP binding. Cap14 adopts a modular architecture, with an N-terminal transmembrane domain and a C-terminal nucleotide-binding SAVED domain. Domain-swapping experiments demonstrated the Cap14 transmembrane region could be substituted with a nuclease, thereby generating a biosensor that is selective for 2′,3′-cGAMP. This study reveals that 2′,3′-cGAMP signaling extends beyond metazoa to bacteria. Further, our findings suggest that transmembrane proteins of unknown function in bacterial immune pathways may broadly function as nucleotide-gated ion channels.

News and Commentaries

  • [Twitter]

Links 

  • DOI: 
  • Journal Link: 
  • BioRxiv Preprint, July 24 2023,

Citation

Tak U, Walth P, Whiteley AT. bioRxiv. 2023 Jul 24;. doi: 10.1101/2023.07.24.550367. PubMed PMID: 37546940; PubMed Central PMCID: PMC10402079.

Tak U, Walth P, ➤Whiteley AT | BioRxiv 2023

Off

Traditional 0 On White ]]>
Wed, 26 Jul 2023 16:44:22 +0000 Anonymous 175 at /lab/aaron-whiteley
CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection /lab/aaron-whiteley/2020/07/09/cbass-immunity-uses-carf-related-effectors-sense-3-5-and-2-5-linked-cyclic CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection Anonymous (not verified) Thu, 07/09/2020 - 09:00 Tags: CARF CBASS antiphage immunity CD-NTase SAVED nucleotide second messenger Lowey B ➤Whiteley AT Keszei AFA Morehouse BR Mathews IT Antine SP Cabrera VJ Kashin D Niemann P Jain M Schwede F Mekalanos JJ Shao S Lee ASY Kranzusch PJ

Cell. 2020 Jul 9;182(1):38-49.e17. doi: 10.1016/j.cell.2020.05.019. Epub 2020 Jun 15.

Abstract

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclicoligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.

Keywords:

CARF; CBASS antiphage immunity; CD-NTase; SAVED; nucleotide second messenger

Links

PMID: 

DOI: 

Lowey B, ➤Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, Antine SP, Cabrera VJ, Kashin D, Niemann P, Jain M, Schwede F, Mekalanos JJ, Shao S, Lee ASY, Kranzusch PJ. | Cell. 2020

Off

Traditional 0 On White ]]>
Thu, 09 Jul 2020 15:00:00 +0000 Anonymous 103 at /lab/aaron-whiteley