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ERIC T. STUEN* 

 
Abstract 

 
Discoveries in basic scientific research at universities are useful in applied 

research in industry and sometimes lead to commercially valuable innovations. Many 
empirical studies have documented a positive relationship between academic research 
and innovation by firms.  However, interpreting this relationship as a causal spillover 
from academia to industry is difficult since a substantial share of academic R&D is 
funded by industry.  Proximity to industry also influences the quality of professorial 
talent at a university, and location decisions of both industry and academics may be 
correlated with other unobservables.  Given the presence of such difficult identification 
issues, this paper uses a novel empirical method to re-examine the effect of academic 
research in particular metropolitan areas on commercial innovation produced in those 
locations.  I exploit the fact that members of certain appropriations sub-committees 
within the U.S. Congress can influence the process of allocating federal research funds in 
favor of their constituents, which leads to ‘exogenous’ variation in research funding at 
particular universities that is plausibly uncorrelated with factors that affect industrial 
innovation.  

I construct a detailed panel of micro-data on patent counts, publication counts, 
doctorates granted and industry R&D expenditures at the metropolitan area/technology 
area/year level with which I find evidence that measures of academic scientific 
knowledge are positively related to industrial patenting.  Using a city-year panel dataset 
of industrial patents and academic publications, I find an elasticity of patents with respect 
to publications from universities in that metropolitan area of 1.17, but that this elasticity 
is reduced to 0.95 when relying only on variation in publications attributable to 
“congressional favors”.  This translates into an extra patent produced by industry for 
every 7 extra academic publications produced by universities located in that city owing to 
the extra research funds diverted to those universities.  An elasticity of patents with 
respect to citations to academic publications of 0.55 is also reduced in the IV set up.  
These results provide evidence of spillovers unrelated to ordinary market transactions 
between firms and universities.  Data on Ph.D. recipients from each university is used to 
examine another channel through which academia affects industry – the employment of 
students with frontier- level technical knowledge. My results show that the employment 
of new doctoral graduates in science and engineering by industry is also positively related 
to industrial patenting. 
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I  Introduction 

 

 Universities and research institutes are frequently touted as sources of knowledge 

that enhance innovation in their local economies.  To casual observers, the decision of 

high-tech firms to locate near world-class research universities is evidence of local 

economic benefits stemming from academic scientific research.  While access to talented 

new graduates is a major consideration, access to new ideas – new knowledge at the 

“frontier” – is another important benefit.  Spillovers from universities are especially 

important due to the role of academic science, which is more basic or “upstream”, in 

fostering the development of applied technology by firms.  While many studies have 

examined the linkages between academic science and industrial innovation, econometric 

identification of causal spillover effects is difficult due to unobservable factors affecting 

the co-location of faculty research talent and industry research.  This study makes use of 

the fact that members of the U.S. Congress influence the distribution of federal research 

funding, creating variation in academic science that is plausibly uncorrelated with local 

industrial innovation.         

Evidence abounds of collaboration and interaction between firms and universities: 

Intel maintains labs in Berkeley, Pittsburgh and Seattle that are staffed by faculty from 

UC Berkeley, Carnegie Mellon University, and the University of Washington, 

respectively.1  The biotech company Lucigen is one of several firms working with the 
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million commitment to MIT over the period 2000-2010.3  Indeed, over the period of 1970 

to 2000, fully 43% of academic R&D funding came from non-federal sources, with a 

large share from industry.4    

Many studies have examined academic knowledge spillovers as the geographic 

co-location of academic R&D and measures of industrial innovation.  This approach does 

not distinguish, however, between sources of knowledge external to firms, or independent 

academic research, and academic research that is essentially an extension of a firm’s own 

R&D activity.  Such a distinction is important when considering the economic benefits of 

academic research – independent research may be more aligned with the broad interests 

of society than “in-house” research, and may be used by a greater number of firms.  Yet 

examining spillover effects from independent academic research is not as simple as 

considering only federally funded research – federal grants allocated through peer-review 

go to highly talented researchers, and the presence of nearby industry may draw 

professorial talent to a university.  For example, the University of Rochester has cited its 

relationship with Kodak for the return of Henry A. Kautz, a “national leader in artificial 

intelligence”, to its faculty.5 Geographic and other unobserved factors, such as the talent 

of new graduates in science and engineering, may also influence the co-location of 

academic and industrial R&D.  Therefore, estimates of the correlation between academic 

R&D and industrial innovation are not identifying a spillover externality per se, but rather 

measuring the total role of academic R&D in applied research by industry.    

                                                 
3 MIT News Office “Dupont Backs MIT Research with Additional $25M”, May 19, 2005 
4 Calculated from the NSF’s Survey of R&D Expenditures at Universities and Colleges, available at 
webcaspar.nsf.org, for Universities sampled in this paper 
5 University of Rochester News Bulletin “New Academic-Industry Collaboration Brings Talent to 
Rochester”, October 4, 2006 
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metropolitan/year observation, I find that separately controlling for this channel of 

influence from academia to industry does not affect the finding above, although the 

number of new PhDs is related to the level of industrial patenting.  In summary, the link 

between academic and industrial innovation is likely multi-dimensional and bi-

directional, and my empirical methodology allows me to isolate a specific component of 

this link, which is the influence of independent basic academic research on the innovation 
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bias the OLS estimate of the spillover coefficient, Jaffe used state demographics such as 

population and the number of universities as instruments for academic R&D.  The central 

findings included IV estimates of the elasticity of industrial patenting with respect to 

university R&D equal to 0.191 for drugs and medical technology, and 0.125 for 

electronics technology.   

Subsequently, many studies have looked at different aspects of academic 

knowledge spillovers.  Acs, Audretsch and Feldman (1992) criticized Jaffe’s use of 

patent counts as a measure of innovation, since the quality and novelty of innovation 

documented by each patent varies widely, and the propensity to patent also varies widely 

across industries.  The use of surveys of corporate managers and the examination of 

citations by patents became more frequently used methods than geographic analysis6; the 

urban and regional literature focused on academic spillovers as a source of agglomeration 

economies.  Although geographic econometric analysis has been employed by some 

studies, most have either ignored the confounding of academic and industrial R&D or 

used an identification method similar to Jaffe (1989); I am unaware of studies that have 

considered identification with respect to the location of faculty talent and other 

unobservables.  Two of the more important studies are discussed below.      

Anselin, Varga and Acs (1997) examined spillovers at the level of 
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Jaffe’s use of patent counts, their measure of innovation was a count of innovations 

constructed by the U.S. Small Business Innovation Database, for 19827.  This unique 

innovation measure was limited to that single year, which prohibited use of variation over 

time.  They were also able to investigate the effect of distance on spillovers by using 

“spatial lags” of the explanatory variables, which turn out to have less of a positive effect 

than R&D conducted near the center of an MSA.   

A more recent study is from Agrawal and Cockburn (2003).  By limiting their 

study to three narrow technological areas in electrical engineering, they were able to 

closely link publishing in those areas (creation of new knowledge) to patents in those 

areas.  They find a high degree of geographic co-location of patenting and publishing, 

and that the presence of an “anchor tenant”8 increases the degree of co-location.  While 

the above studies interpreted this co-location as evidence of a causal spillover, this study 

explicitly acknowledged the difficulties in assigning causality.  As Agrawal and 

Cockburn put it,  

“Though there are good reasons to believe that papers “cause” patents in 
the sense that downstream industrial R&D activity relies on upstream science, it is 
quite possible that causation runs in the opposite direction.  We have not specified 
a production function technology for R&D nor made any assumptions about the 
behavior of actors in this process.” (Agrawal and Cockburn, 2003, pp. 1243-45) 
 

The present study is not completely agnostic about the mechanisms for spillovers.  

Much is known about the channels of academic knowledge spillovers, and the 

applicability of an econometric approach to measure them is considered in section III.  

                                                 
7 This was a one-time assessment of innovations listed in trade journals. 
8 Agrawal and Cockburn define an “anchor tenant” as a company with both at least one patent in a 
particular narrow tech. area and at least one thousand patents in general. 
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Identification with a different approach than 
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development of new products and processes.  Although some knowledge may be 

transferred through publishing, due to the tacit component of knowledge on the frontier 

of research, employment or consulting relationships must be a factor causing local 

spillovers. 

 

IV Identification and Empirical Method 

 Identification of a causal effect of academic research on industrial innovation has 

been difficult because of the complexity of the links between academic science and 

industrial R&D.  Estimates of the relationship between academic R&D and measures of 

industrial innovation confirm what is widely known: there is a high degree of 

collaboration.  More interesting, in terms of its economic implications, is isolation of an 

academic knowledge spillover effect that is independent of industry influence.  
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agencies are more likely than others to fund research in particular locations, this allows 

Congress to direct research funds to agencies likely to aid institutions connected to their 

own constituents.   

The makeup of congressional appropriations sub-committees is plausibly 

unrelated to local factors influencing academic and industrial research.  Membership on 

such committees is based on the sharing of power within Congress, and many members 

retain their positions for decades.  Loss of a committee seat is usually the result of a lost 

election or a retirement, which is based on local political conditions or personal 

conditions.  Also, research funding is only a small portion of the federal budget, and 

members of congress seek seats on the appropriations committee with an eye for 

distributing the whole budget.  Given such facts, it seems unlikely that committee 

membership would be related to industrial research and local labor market conditions.  

Indeed, Aghion, Boustan, Hoxby and Vandenbussche (2005) use congressional 

representation dummy variables as instruments for federal research funding in their study 

of the effects of educational spending on state economic growth, under the premise that 

such variables are unrelated to unobservable conditions affecting state economic growth. 

Therefore, to identify an academic knowledge spillover effect, this study will 

make use of the connection between appropriations committee membership and academic 

R&D by using indicators of congressional representation as instruments for measures of 

scientific knowledge: publication counts and publications citations counts.  An additional 

instrument included is an actual measure of politically designated research funds, 

“academic earmarked grants”.  These are grants to universities and research institutes that 

are written directly into the federal budget by the members of the appropriation 
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tjijijtjitjitji tXKI ,,,,,,,, *'* εγαφβ ++++=    (1) 

Here, I represents private-sector innovation, K is a measure of academic 

knowledge, and X is a vector of control variables for innovative characteristics (such as 

private sector R&D or employment of researchers) that vary by metropolitan area (i), 

technological area (j) and year (t).  The measure of private-sector innovation used is a 

count of patents assigned to U.S. cor
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granted patents, to avoid undue lag issues associated with grant dates.  Citation weighted 

patents would have been preferable to better capture the quality of innovations, but due to 

the long lag in citations and the shortness of the panel, it was not feasible.17 Patents were 

assigned to five technological areas, “Drugs and Medical”, “Chemical and Synthetic 

Materials”, “Electrical, Sensing and Computing”, “Mechanical and Transport” and 
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institutes and 5 federally funded research and development centers, all within the U.S20.  

This set of institutions included those that had received at least $10 million in federal 

research grants in 2003.       

 Metropolitan areas were included in the sample if they contained at least one 

included institution, and it is important to note the wide geographic distribution of these 

research institutions.  Every state contains at least one university in the sample, and most 

are located in non-contiguous metropolitan areas.  Large cities, however, benefit from 

containing most independent non-profit research institutions and medical schools.  Where 

metropolitan areas are contiguous and small geographically, they are combined into 

CBSA, which should limit measurement error due to overlapping regional labor 

markets21. 

   Academic knowledge spillovers should be at best only a small factor contributing 

to industrial innovation.  Two measures were used to control for the primary factor, 

industrial research and development expenditures.  Payroll in Scientific R&D services 

was compiled from the Census Bureau’s County Business Patterns (CBP) data.  This 

measure is proportional to the level of subcontracted R&D.  While it measures a part of 

R&D expenditures accurately, that part is relatively small compared to the “in-house” 

component of R&D.  However, the “in-house” component is not available, to the best of 

my knowledge, at the establishment level due to strategic needs for secrecy.  A second 

R&D control variable, which will be called “Industry R&D (estimate)”, was constructed 

by combining information on R&D at the state level from the NSF’s Survey of Industrial 

                                                 
20 See appendix A for a correspondence between fields of science and the five technological areas used in 
the estimation. 
21 In most cases, the universities and institutes themselves were located near the geographic center of the 
metropolitan area. 
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Research and Development (SIRD) and information at the county level from the (CBP)22.  
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The main instrumental variables used were indicators for whether an observation 

had congressional representation on subcommittees of the Appropriation committees, 

subcommittees that are linked to the funding of academic research.  Lists of appropriation 

committee members were compiled from volumes of the Congressional Staff Directory, 

plus information on their state and district of representation, party affiliation and status as 

chairperson or ranking minority member.  Savage (1991) found that members of the 

appropriation subcommittees for Agriculture and Defense play a significant role in 

determining where research funding is allocated, and Payne (2003) notes that certain 

subcommittees oversee the budget for the major agencies that fund research: the 

subcommittee on VA, HUD and Independent Agencies oversees the NSF and National 

Institutes of Health.  Payne (2003) also documented statistically a relationship between 

subcommittee membership and federal research funding at the university level.  For each 

of four subcommittees23, four variables created include indicators for House and Senate 

general membership, and House and Senate chair status.    Every metro area in a state 

was considered to be represented simultaneously by a Senator, while metro areas were 

considered to be represented by a House member if the district of that member either 

overlapped with or bordered that metro area. 

As a final instrumental variable, data on academic earmarked grants comes from 

two sources: the Chronicle of Higher Education, for the period 1990-2003, and James 

Savage for the period 1980-1996.  Neither source is an exhaustive list of earmarked 

grants, but the Chronicle lists 11,161 distinct appropriations, while Savage found 3,788 

for the earlier period.  In the overlapping period, 1990-1996, the listed grants are 

                                                 
23
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generally similar, with the Chronicle reporting 10-20% more per year24.  Grants were 

assigned to metropolitan and year by the location of the grantee institution, and 

metro/year aggregates were used in the following analysis25.   

 

VI. Empirical Results 

 OLS regressions measuring the general rate of collaboration at the most 

disaggregated level, that of metropolitan, technology area and year, are reported in Table 

2.  Since the congressional representation instruments do not vary by technology area, 

that analysis did not include the instrumental variables. They were used in two-stage least 

squares regressions estimated at the metro/year level and reported in Tables 4-6.  Table 3 

presents the results of the first stage of instrumental variables regression, to show the 

power of the instruments under different conditions.     

 In column 1 of Table 2 we see OLS estimates of the production function in 

equation (1), but without fixed effects or trends.  The estimate of beta shows a general 

collaborative effect of one additional corporate patent for an increase of 42.9 

publications.  At the mean levels of patenting and publishing, the elasticity of patents 

with respect to publishing is 0.13.  All of the control variables have a positive and 

statistically significant effect on patenting as well: an extra doctorate earned is associated 

with an extra 0.7 patents, the marginal effect of a million dollars of “in-house” R&D is 

0.037 patents, while that of a million dollars of subcontracted R&D is 0.14 patents.  

Inclusion of the fixed effects, in column 2, causes all of these estimated effects to be 

                                                 
24 The difference was due to different definitions of an “earmark”.  I use the Chronicle data from 1990, 
excluding appropriations not related to science and engineering.  The difference is not quantitatively 
important to the present study. 
25 An attempt was made to assign earmarked grants to technological areas.  A rough assignment was 
possible for the Chronicle data, but it was ultimately unnecessary for the analysis. 
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diminished.  Inclusion of the trend variables in column 3 serves to diminish the effect of 

the control variables, while increasing the effect of publications.  The size of the trend 

coefficients are interesting to note: relative to patenting in Drugs and Medicine, only 

patenting in the Chemical technology area declined over the period 1977-1999.  On the 

other hand, Electrical and Computing patents saw an average increase of 4.09 patents per 

metropolitan and year over the increase in Drugs and Medicine.  This is after controlling 

for industrial R&D, and so represents increased patenting for other reasons, most likely 

shifting incentives for patenting due to strategic or legal changes.  Column 4 omits the 

variable “Payroll in Scientific R&D Services”, and we see the coefficient on publications 

increase dramatically, showing that the measured spillover effect is particularly sensitive 

to this control variable. 

 The simple regression without fixed effects or trends is again estimated in column 

5, but this time with citation-weighted publication counts.  The estimated effect shows 

that an increase in citations of two thousand is associated with an increase of one patent, 

or an elasticity at the means of 0.09.  Although two thousand citations may seem like a 
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from academic research to industrial innovation.  Table 3 shows the results of first-stage 

regressions, with publication and publication citation counts regressed on the other 
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marginal effect of 0.206, or 1 patent for every 5 publications, an elasticity of 1.17.  This 

effect is much higher than the disaggregated result, and is probably due to inability to 

control for differences in patenting across technology areas as in Table 2.  After 

implementing two-stage least squares, the marginal effect is reduced to 0.168.  While the 

estimate is not precise enough to rule out the possibility that the true coefficient is the 

same as the OLS estimate, it is suggestive of a positive bias in the OLS estimate, showing 

the effect of endogeneity to be inflating the estimate of spillovers by almost 25%.   

 With citation-weighted publications, a quite different result emerges.  While the 

OLS fixed effects coefficient of 0.003 in column 6 shows that an extra 333 academic 

citations are associated with an extra patent, an elasticity at the means of 0.55, the 

identified spillover effect in column 7 is negative and marginally statistically significant.  

This spillover estimate is precise enough to rule out parity with the general effect, as the 

estimate in column 6 is not within the 95% confidence interval of the IV estimate.  

Another feature of the regression in column 7 is that the estimated effect of a new PhD 

has risen dramatically.  Since this variable may also be endogenous, column 8 shows the 

regression without the new PhD variable, and the estimated coefficient on citation-

weighed publications is now indistinguishable from zero.  Collectively, these results 

suggest that the local innovative benefit of independent academic research is less than 

academic research in general.            
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counts may be in effect measuring the same thing as the new PhD count, the “quantity” 

of new ideas.  Also we see that the estimate of the marginal effect of a new PhD increases 

dramatically when going from OLS to 2SLS (columns 2 to 3, and 6 to 7).  This 

emphasizes the idea that the knowledge measures are highly related to the new PhD 

count, as its effect is greater when only exogenous variation in publications and citations 

is used. 

 Table 5 presents regressions done with panels constructed using each 

technological area separately (i.e. the number of patents in Drugs and Medical regressed 

on publications in Drugs and Medical, etc).  Here the full set of non-technology specific 

instruments is used to predict the number of publications in a particular technological 

area.  The first thing to note is that the magnitudes of the OLS coefficients on 

publications vary markedly by technological area.  The general collaborative effect is 

largest for Chemical and Mechanical industries.  The estimated spillover effect from 

implementing two-stage least squares varies as well, with that of Chemical, and Electrical 

and Computing, actually increasing relative to the OLS.  This increase is consistent with 

Jaffe (1989), which also found an increase in the IV spillover effect for those areas, 

relative to the OLS.  It may be true that the marginal effect of independent research is 

greater than that of collaborative research for those technology areas.  Only in Drugs and 

Medical do we see any evidence of attenuation of the estimated coefficient as in the 

aggregate regression. The 2SLS coefficients in columns 8 and 10 are too imprecisely 

measured to tell the direction of the bias for those areas.       

 Table 6 again shows that the spillover effect is greatest for Chemicals.  Again for 

Drugs and Medical we see attenuation in the effect towards zero, but now this is also true 
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number of new PhD graduates may be another measure of academic knowledge, and a 

channel for academic spillovers. 

 These results are preliminary, as furt
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Table 1: Sample Statistics and Simple Correlations          
 5 tech. area panel (Used in Table 2)   Metro-year Aggregate panel (used in Table 4)  

Variable Obs Mean 
Std. 
Dev. Min Max   Obs Mean 

Std. 
Dev. Min Max  

Patent count 12190 50.00 142.67 0 4136   2462 247.54 608.99 0 8934  
Publications 12190 284.43 566.08 0 8929   2462 1408.29 2178.50 0 18763  
Publication 
Citations 12190 9197.40 24842.97 0 406502   2462 45538.72 90773.11 0 775727  
New PhD count 12190 28.80 48.94 0 556   2462 142.59 196.60 0 1305  
Industrial R&D 
(est.) 12130 159.06 857.81 0 25308.3   2462 783.66 3252.29 0 46522.56  
Payroll in 
Scientific R&D 
Services 12130 72.96 286.05 0 5882.59   2462 359.44 1420.68 0 29412.95  
               
Simple 
Correlations 

Pat. 
Count 

Pub. 
Ct. Cit.-wgt. PhDs 

Ind. 
R&D 

Sci. 
R&D 

Pat. 
Count Pub. Ct. Cit.-wgt. PhDs 

Ind. 
R&D 

Sci. 
R&D 

Patent count 1.00       1.00      
Publications 0.52 1.00      0.77 1.00     
Publication 
Citations 0.48 0.96 1.00     0.77 0.96 1.00    
New PhD count 0.54 0.85 0.79 1.00    0.70 0.86 0.84 1.00   
Industrial R&D 
(est.) 0.51 0.51 0.46 0.50 1.00   0.65 0.59 0.57 0.50 1.00  
Payroll in 
Scientific R&D 
Services 0.49 0.43 0.33 0.40 0.48 1.00 0.55 0.53 0.45 0.44 0.63 1.00 
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Table 2: OLS Regressions at level of Metropolitan Area, Technology area, Year     
Dependent Variable: Patent Counts (1) (2) (3) (4) (5) (6) (7) (8) 
Publication Count 0.0233*** 0.0165*** 0.0293*** 0.0748***     
  (0.0033) (0.0057) (0.0059) (0.0059)     
Citation-weighed Publication Count     0.0005*** -0.0001 0.0003** 0.0005*** 
      (0.0001) (0.0001) (0.0001) (0.0001) 
New PhD Count 0.7033*** 0.6609*** 0.4679*** 0.6213*** 0.7180*** 0.7949*** 0.5724*** 0.9954*** 
  (0.0379) (0.0697) (0.0723) (0.0751) (0.0338) (0.0655) (0.0703) (0.0723) 
Industrial R&D (estimate) 0.0370*** -0.0272*** -0.0266*** -0.0005 
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Table 3: First stage Instrumental Variables Regressions      
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Table 5: IV regressions on publication counts, metro/year panel, by technology category     
Dependent 
Variable: 

Patent Counts 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

 
Drugs and Medical Chemical 

Electrical and 
Computing Mechanical 

Agriculture, Mining 
and Environmental 

Publication 
Count 

0.0380*** 0.0087 0.9462*** 1.1004*** 0.2021*** 0.3645*** 0.3129*** -0.0659 0.0358*** 0.0442 
(0.0032) (0.0171) (0.0709) (0.3597) (0.0097) (0.0617) (0.0326) (0.2064) (0.0056) (0.0278) 

Industrial R&D 
(estimate) 

-
0.0306*** 

-
0.0288*** -0.0383** -0.0442** 0.1456*** 0.1165*** 0.0007 0.0116 0.0033 0.0013 

(0.0013) (0.0017) (0.0155) (0.0205) (0.0068) (0.0131) (0.0062) (0.0086) (0.0083) (0.0105) 
Payroll in 

Scientific R&D 
Services 

0.0077** 0.0149*** 0.2139*** 0.2019*** 
-
0.0229*** 

-
0.0442*** 0.0867*** 0.1163*** 0.0252*** 0.0230*** 

(0.0038) (0.0056) (0.0133) (0.0306) (0.0055) (0.0099) (0.0074) (0.0176) (0.0030) (0.0077) 

New PhD 
Count 0.1483*** 0.4563** 

-
1.7141*** -2.1392** 0.0368 -0.7759** 0.1064 1.5014* -0.1495 -0.1475 

(0.0533) (0.1846) (0.3823) (1.0448) (0.0728) (0.3142) (0.1972) (0.7771) (0.1259) (0.1261) 
Observations 2402 2402 2402 2402 2402 2402 2402 2402 2402 2402 
R-squared 0.25  0.30  0.61  0.25  0.11  
All regressions with metro fixed effects, 106 cross-
sections        
Standard errors in 
parentheses          
* significant at 10%; ** significant at 5%; *** significant at 1%       
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Table 6: IV regressions on citation-weighed publication counts, Metro/year panel, by technology category    
Dependent 

Variable: Patent 
Counts 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

 
Drugs and Medical Chemical 

Electrical and 
Computing Mechanical 

Agriculture, Mining and 
Environmental 

Citation-weighed 
Publication Count 

0.0008*** -0.0002 0.0113*** 0.0361* 0.0032*** 0.0015 -0.0091*** -0.0018 0.0007*** 0.0004 
(0.0001) (0.0004) (0.0026) (0.0212) (0.0002) (0.0012) (0.0018) (0.0121) (0.0001) (0.0006) 

Industrial R&D 
(estimate) 

-0.0315*** -0.0275*** -0.0110 -0.0306 0.1635*** 0.1733*** 0.0134** 0.0104 0.0000 0.0056 
(0.0013) (0.0021) (0.0159) (0.0231) (0.0070) (0.0097) (0.0063) (0.0079) (0.0085) (0.0135) 

Payroll in Scientific 
R&D Services 

0.0185*** 0.0167*** 0.2836*** 0.2742*** 0.0086 0.0059 0.1091*** 0.1107*** 0.0304*** 0.0324*** 
(0.0037) (0.0039) (0.0125) (0.0150) (0.0056) (0.0059) (0.0070) (0.0075) (0.0027) (0.0045) 

New PhD Count 0.1971*** 0.6177*** 0.3101 -0.9759 0.4675*** 0.7771*** 1.6291*** 1.3302** -0.1653 -0.1617 
(0.0515) (0.1797) (0.3663) (1.1505) (0.0693) (0.2205) (0.1743) (0.5190) (0.1263) (0.1266) 

Observations 2402 2402 2402 2402 2402 2402 2402 2402 2402 2402 
R-squared 0.25  0.25  0.58  0.23  0.10  
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Appendix A: Data Compilation Details 

 
 Patent Data:  Patent data were compiled from the NBER U.S. Patent Citations 
Datafile (see www.nber.org).  An extension for patents granted in years 2000-02 was 
compiled with data from Bronwen Hall and inventor data from the USPTO Cassis 
database.  Varying length of time from application to grant date meant that counts for 
recent years were truncated.  Years with truncated patent counts were not kept in the 
panel, except for 1999, for which undercounting was limited to 10-15%.  Assignment of 
patents to technology areas were made according to the following table: 
 
Table A1 

NBER  
Subcategory Subcategory Name Tech Area Tech Area Name 

11 Agriculture, Food, Textiles 5 Agriculture, Mining, Env. and other 
12 Coating 2 Chemical 
13 Gas 2 Chemical 
14 Organic Compounds 2 Chemical 
15 Resins 2 Chemical 
19 Misc. Chemical 2 Chemical 
21 Communications 3 Electrical and Computing 
22 Computer Hardware & Software 3 Electrical and Computing 
23 Computer Peripherals 3 Electrical and Computing 
24 Information Storage 3 Electrical and Computing 
31 Drugs 1 Drugs and Medical 
32 Surgery & Medical Instruments 1 Drugs and Medical 
33 Biotechnology 1 Drugs and Medical 
39 Misc. Drugs and Medical 1 Drugs and Medical 
41 Electrical Devices 3 Electrical and Computing 
42 Electrical Lighting 3 Electrical and Computing 
45 Power Systems 3 Electrical and Computing 
46 Semiconductor Devices 3 Electrical and Computing 
49 Misc. Electrical 3 Electrical and Computing 
51 Materials Processing & Handling 4 Mechanical 
52 Metal Working 4 Mechanical 
53 Motors & Engines 4 Mechanical 
54 Optics 3 Electrical and Computing 
55 Transportation 4 Mechanical 
59 Misc. Mechanical 4 Mechanical 
61 Agriculture, Husbandry, Food 5 Agriculture, Mining, Env. and other 
63 Apparel and Textile 5 Agriculture, Mining, Env. and other 
64 Earth Working and Wells 5 Agriculture, Mining, Env. and other 
65 Furniture, House Fixtures 5 Agriculture, Mining, Env. and other 
66 Heating 5 Agriculture, Mining, Env. and other 
67 Pipes and Joints 4 Mechanical 
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Publication Data: Counts of academic publications, and citations to those publications, 
were constructed from automated searches of Thompson Inc.’s Web of Science using a 
Perl script.  All publications in journals tracked by Web of Science associated with 218 
U.S. universities, 98 non-profit research institutes and five federally funded R&D centers, 
from 1973-2001 were included.  Assignments of publications to fields of science were 
made using an algorithm that combined information from the “subject category” and 
“address” fields of the publication record28.  Assignment from fields of science to 
technology areas was made according to the following table: 
 
Table A2 

Field of Science and Engineering Tech. 
Area Technology Area Name 

Mathematics 3 Electrical and Computing 
Computer Science 3 Electrical and Computing 

Statistics / Biostatistics 1 Drugs and Medical 
Chemistry 2 Chemical 

Physics 3 Electrical and Computing 
Astrophysics / Astronomy 3 Electrical and Computing 

Geosciences 5 Agriculture, Mining, Env. and other 
Oceanography 5 Agriculture, Mining, Env. and other 

Biochemistry / Molecular Biology 1 Drugs and Medical 

Genetics 1,5 Drugs and Medical, Agriculture, Mining, 
Env. and other 

Neurosciences 1 Drugs and Medical 
Pharmacology 1 Drugs and Medical 

Physiology 1 Drugs and Medical 
Cellular and Development Biology 1 Drugs and Medical 

Ecology, Evolution and Behavior 5 Agriculture, Mining, Env. and other 
Aerospace Engineering 3,4 Electrical and Computing, Mechanical 

Biomedical Engineering 1 Drugs and Medical 
Chemical Engineering 2,3 Chemical, Electrical and Computing 

Civil Engineering 4 Mechanical 
Electrical Engineering 3 Electrical and Computing 
Industrial Engineering 4 Mechanical 
Materials Engineering 2 Chemical 

Mechanical Engineering 4 Mechanical 
 
         Publications (and the number of citations to them) were assigned to the institution 
of each author, so coauthored papers (and their citations) were essentially weighted by 
the number of authors. 
 

 
 
 
 

                                                 
28 See Stuen, Maskus and Mobarak, “Foreign PhD Students and Knowledge Creation: Evidence from 
Enrollment Fluctuations” Working Paper, 2007 for a precise specification of this algorithm 
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Industrial research and development control variable: A control variable for 
private-sector R&D was constructed from several data sources.  The primary source, the 
NSF’s Survey of Industrial R&D, provides estimates of aggregate corporate R&D at the 
state level, for most odd years and some even years.  See www.nsf.gov for data 
availability.  In order to create a panel variable at the level of metro/tech-area/year, 
additional sources were needed.  SIRD table 37, from 2003, provides a breakdown of 
R&D over broad (3-digit) industries.  The aggregate payroll measure from the Census 
Bureau’s County Business Patterns data was used to weight R&D of a state/industry 
group by the percent of aggregate payroll of a particular metro-area within that state.  The 
CBP data was available by 3 digit NAICS industry more recently than 1997, but by 2 
digit SIC industry for 1997 and previous years.   

The aggregate payroll measure also varied by time, unlike the R&D 
decomposition by industry.  Hence the necessary assumptions in using this variable 
include a) that the distribution of R&D among industries is roughly constant across states 
and time, and b) that R&D is positively correlated with aggregate payroll.  This second 
assumption should be helped by the fact that R&D estimates and aggregate payroll 
estimates were matched at the industry level.   Given all of these assumptions, and the 
fact that the original aggregate is itself an estimate, this variable should be treated as no 
more than a proxy for actual R&D.    

  The actual variable is created as so: 
 mitmtist DRAPDRDR &
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related services 
Computers and peripheral 

equipment 
334 367, 357 3  

Construction 23 15,16,17 4  
Drugs and druggists’ sundries 4242  0 (non-science) for the sale, not 

manufacture 
Electrical equipment, 

appliances, and components 
335 36 3  

Electrical goods 4216  0 for the sale, not 
manufacture 

Fabricated Metal Products 332 34 4  
Finance, insurance, and real 

estate 
52  0  

Food (production) 11  5  
Furniture and related 

products 
337 25 5 for wood products 

Health care services 62 80 1  
Machinery 333 35 4  

Management of companies 
and enterprises 

55  0  

Medical equipment and 
supplies 

3391 384 1 (drugs and medical)  

Mining, extraction and 
support activity 

21 10, 12, 13  5 excluding non-metallic 

Motor vehicles, trailers and 
parts 

336 371,373, 379 4  

Navigational, measuring, 
electromedical, 
manufacturing 

3345 382 3  

Newspaper, periodical, book, 
and database; publishing 

514 823,735,737 3 for innovations in databases 

Nonmetallic mineral products 2123 14 2 for chemical-based mining 
processes 

Other broadcasting and 
telecommunications 

5179  0  

Other chemicals 3259 28, 30, 3861 2  
Other computer and 
electronic products 

3344 3679 3  

Other information services 519 7375 3  
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New PhD Control Variable:  Data on recipients of Doctorates in science and 
engineering from U.S. universities was compiled from the NSF’s Survey of Earned 
Doctorates under a licensing agreement.  The variable constructed is the number of 
Doctorates granted at all of the 218 universities in the sample.  PhD’s were assigned to 
metropolitan areas according to the location of their doctoral institution.  They were 
assigned to fields of science (see Table A2) based on the specialized area of their 
dissertation, and these fields assigned to broad technology categories in the same way as 
publications.  A matching of dissertation areas and fields is available upon request. 
 
 
 
 

Appendix B: Related Literature 
 

One alternate approach has been to study patterns and location of patent citations.  
Jaffe, Trajtenberg and Henderson (1993) found that academic patents cited by industrial 
patents were more likely to be cited by firms located near to the university.  Other studies 
that look at citation trails are Henderson, Jaffe and Trajtenberg (1998), Branstetter and 
Ogura (2005) and Kim, Lee and Marschke (2006). 

Yet another approach has been to use surveys and case studies to gain insight into 
the connection between academic and industrial research.  Mansfield (1995) surveyed 
corporations and found that 10% of industrial innovation can be attributed to academic 
research.  Other studies that have used surveys and case studies to document the 
mechanism of spillovers are Cohen, Nelson and Walsh (2002) and Jensen and Thursby 




