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1 Introduction

Many investments are relationship{speciflc. Leading examples include workers



speciflcally refers to non{cooperative bargaining games. However, the solution
concepts he employs all rely on backward induction. Thus, if the bargaining
game has a unique equilibrium which survives backward induction, there is no
way that sunk costs can afiect the bargaining outcome. This is the natural
starting point of our paper, which asks the following two questions:

• What if the bargaining game has multiple subgame perfect equilibria?

• What if we employ other solution concepts than subgame perfection?



(1993) and Binmore and Samuelson (1999), has made clear that evolution
may not always favor subgame perfect equilibria. Evidence from bargaining
experiments has also cast doubt on the predictive power of subgame perfec-
tion. To examine this issue, we also analyse a very simple bargaining game
with a unique subgame perfect equilibrium, namely, an ultimatum game in
which the investor can only accept or reject the proposal made by the trading
partner. For believers in subgame perfection, this game provides the starkest
possible example of a hold{up problem: The investor should accept any ofier,
no matter how meager, hence the trading partner should demand (virtually)
the whole surplus, and consequently the investor should make (virtually) no
investment. While this outcome is stochastically stable, so is almost any other
outcome, including the e–cient investment level.

Although these are two speciflc examples of bargaining games, the results
suggest that a general principle might be at work: When there is no ten-
sion between e–ciency and subgame perfection, stochastic stability not only
picks some e–cient outcome, but also selects a unique such outcome. On the
other hand, when e–ciency and subgame perfection are in con°ict, stochas-
tic stability has little cutting power. If this is indeed a general feature, the
two bargaining games we study represent opposite extremes, and evolutionary
analysis of the hold{up problem using other non{cooperative bargaining games
is bound to admit e–cient investment too.

While our analysis is evolutionary, the results can be given a rationalistic
interpretation using the concept of forward induction. The reason why the
investor is able to capture a share of the surplus that is su–cient to cover sunk
costs is that the trading partner believes that it will not pay to be more greedy.
After all, there are only two possible reasons why the investment was under-
taken. Either the investor expected coordination on a favorable equilibrium
or he made a mistake. The forward induction argument says that the trading
partner should try to square the observed action with rational behavior; hence
the trading partner should act in accordance with an equilibrium which makes
the observed level of investment ex post rational for the investor. In a com-





2 Investment and Bargaining

There are two players, A and B, who play a two{stage game. At stage 1,
player A chooses an investment I from a flnite set “ = {0 = I0; I1; :::; IN = „I}.
This investment creates a beneflt (pie) of size V (I). At stage 2, the players
bargain. We will consider two difierent bargaining games, namely, the Nash



is smaller; it contains only the elements DA = {V (I) − x; V (I)}, where the
flrst element is equivalent to accepting B’s ofier and the second element is
equivalent to rejecting it. However, the smaller set of demands for A is not
an important difierence between the two games. It would not matter much
if we allowed player A to choose any demand in D; the essential distinction
between the two bargaining games is that B has a flrst{mover advantage in
the ultimatum game. For player A a pure strategy for the whole game is a
now pair (I; y(x)), i.e., A’s demand is a function y : D → D rather than a real
number.

Before turning to the evolutionary analysis, let us consider the subgame
perfect Nash equilibria. When the investment decision is followed by the Nash
demand game, there is a vast multiplicity of subgame perfect equilibria. In par-
ticular, there are subgame perfect equilibria sustaining flrst{best investment.
To take one example, suppose A plays the strategy (I = I∗ I



Subgame perfection admits virtually any outcome in the Nash demand game,
but only admits low investment in the ultimatum game. As shown below, the
conclusion is radically difierent when we apply the criterion of evolutionary
stability instead of subgame perfection.

3 Evolution

Evolutionary analysis refrains from answering the metaphysical question of
which strategies are rational. Instead, it tries to answer the more economic
question of which strategies can be expected to survive competitive pressures.
The study of stochastic evolution in games was pioneered by Foster and Young
(1990), Kandori, Mailath and Rob (1993) and Young (1993a). The extension
to extensive form games is due Nõldeke and Samuelson (1993), and we apply
their framework here.7

For each player role, A and B, let there be a population of size N . Each
period t ∈ {1; 2; :::} every possible combination of agents in populations A and
B meet and play the investment cum bargaining game. The set of strategies is
the same as above. Agents also hold beliefs about their opponent, but taking
an evolutionary approach, we do not require players to behave rationally given
their beliefs. Let ”(·|I) denote player A’s beliefs concerning player B’s demand,
and let ¾(·|I) denote player, B’s belief about player A’s demand. Both ”
and ¾ are probability distributions on the set of possible demands, and they
are contingent on the investment I. If surplus is divided according to the
ultimatum game, ¾ also depends on player B’s demand, x.

We make two additional \technical" assumptions.

Assumption 1 (i) The pie division is small: V (Î) > 2–. (ii) The population
is large: V (I∗)



the two games, so is the state space.) With each state µ there is an associated
probability distribution of terminal nodes, denoted z(µ).

Beliefs and strategies evolve in two difierent ways; by adaptation to the
current environment and by random mutation. Adaptation occurs in the fol-
lowing way. Every period each agent has an i.i.d. chance of rationally updating
his beliefs and strategy. This is called an updating draw. An updating agent
observes z(µ), updates his beliefs based on this observation (beliefs following
decision nodes not reached in state µ are unchanged) and chooses a best re-



Proposition 2 allows us to speak about equilibria rather than absorbing sets
from now on. Let „£ be the set of equilibria.

Before getting to the more substantial results, we need to be more precise
about our deflnition of local stability. The basin of attraction of an equilibrium
µ, denoted B(µ), is the set of states µ′ such that the population can get from
µ′ to µ without mutation. Similarly, we say that µ′ is in the single mutation
neighborhood of µ, denoted µ′ ∈M(µ), if µ′ and µ difier by a single mutation. A
union of equilibria, X, is a mutation connected set if for all pairs of equilibria
µ1,µn ⊂ X, there exists some ordering of the remaining equilibria, (µ2; :::; µn−1),
such that for all k = 1; :::; n; M(µk) ∩ B(µX µ



do better than all other agents in population A. Hence, as other agents in
population A update their strategy, they will also start playing (I∗; V (I∗)−–):

While all locally stable outcomes have investment I∗, there is some scope
for variation in the equilibrium division of surplus. We show that the largest
demand by agent B which is consistent with local stability is

xL = max{x ∈ DB(I∗)|(V (I∗)− x)
N − 1

N
− I∗ ≥ V (Î)− Î − –}:

To understand the magnitude of xL, observe that the largest demand that
agent B could make following an e–cient investment, that would not give
agent A an incentive (weakly) to choose a less e–cient investment, even if he
expected to get (almost) all of the surplus is

xM = max{x ∈ DB(I∗)|V (I∗)− x− I∗ > V (Î)− – − Î}:

It is straightforward to show that xM−– ≤ xL ≤ xM : The steps of the argument
are the following:

(V ∗ − xM + –)(N − 1)=N − I∗ = V (I∗)− xM − I∗ − (V (I∗)− xM)=N

+–(N − 1)=N

> V (I∗)− xM − I∗ − (– − xM)=N

≥ V (I∗)− xM − I∗
≥ V (Î)− – − Î ;

where the strict inequality is due to Assumption 1. Intuitively, the (N − 1)=N
term in xL assures that if one agent in population B changes his demand, this
will not cause agents in population A to change their investment away from
the e–cient level.

Proposition 3 Let agents bargain according to the Nash demand game. The
outcome ‰ is locally stable if and only if ‰ = {(I∗; V (I∗)−x; x)}, where x ≤ xL.

Note how, in this case, local stability identifles a much smaller set of out-
comes than did subgame perfection. In particular, subgame perfection allowed
ine–cient investment, whereas local stability does not.

Let us now reflne the set of locally stable outcomes and consider the
smaller set of stochastically stable outcomes. Although stochastic stability
is easy enough to deflne, the computation of stochastically stable equilibria
is a bit more demanding. It basically requires counting the number of muta-
tions needed to move from one equilibrium to another. The equilibria which
are most easily reached from all other equilibria (in terms of requiring fewest
mutations) are stochastically stable. To articulate this idea precisely, we need
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a couple of additional deflnitions. Recall that „£ denotes the set of equilibria.
Let r(µ; µ′) be the minimum number of mutations needed to move from an
equilibrium µ to another equilibrium, µ′: Deflne the graph G as the collection
of vertices, one vertex for each equilibrium, with a directed edge from every
vertex to every other. The resistance (or cost) of the edge µ → µ′ is r(µ; µ′).
A µ{tree, ¡, is a collection of edges in G such that from every vertex µ′ 6= µ
there is a unique directed path to µ, and there are no cycles. The resistance
of a tree ¡ is the sum of the resistances of all the edges in the tree. Finally,
the stochastic potential of an equilibrium µ is the minimum resistance over all
µ-trees. The key to checking whether an equilibrium is stochastically stable is
provided by Young (1993a, Theorem 4).

Theorem 1 An equilibrium µ is stochastically stable if and only if no other
equilibrium has lower stochastic potential.

In fact, it is shown below (in the proof of Proposition 4) that it su–ces to con-
struct trees that are much simpler than those described above. By deflnition,
any transition between equilibria requires at least one mutation. Hence, when
constructing a minimum resistance tree, one can ignore edges with resistance 1.
Notice also that from any equilibrium one may arrive at an equilibrium within
a locally stable set through a sequence of one mutation transitions, and one
may move around within the locally stable set in the same manner. Hence, it
su–ces to construct trees with locally stable sets (represented by locally stable
outcomes) as vertices.

Since all locally stable outcomes under Nash demand bargaining have the
property that I = I∗ and that y = V (I∗) − x, these outcomes can be fully
characterized by B’s demand, x. There are two ways in which a transition
between locally stable outcomes may occur. First, there might be a direct
transition, during which investment is maintained at the e–cient level. In
this case, we can appeal to Young (1993b) and observe that if x < xNBS =
V (I∗)=2; then the easiest transition is to the outcome x + –: Conversely, if
x > xNBS; the easiest transition is to x − –: Denote the resistance to such a
transition by r(x): Second, there might be an indirect transition, during which
the population passes through a state with ine–cient investment. This involves
having a su–ciently large portion of population B increase their demands
to such an extent that e–cient investment is less attractive to population
A than the outcome (Î ; V (Î) − –; –) (which is the most attractive ine–cient
outcome). If this happens|as it might do, following appropriate drift|then
the populations will make a transition to this ine–cient outcome, after which a
sequence of single mutation transitions (the resistances of which we can ignore)
su–ce to get the populations to (I∗; V (I∗)−–; –): Let r̂(x) denote the resistance
of the transition from the outcome (I∗; V (I∗)− x; x) to (Î ; V (Î)− –; –). Since
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we can show that r̂(x) > r(x) whenever x > xL (see Appendix), it is easy to
construct a minimum resistance tree. The case xM > xNBS essentially reduces
to the analysis of the Nash demand game in Young (1993b). Otherwise, if
r̂(xL) ≥ r(xL − –); the minimum resistance tree is given by

– −→ 2– −→ ::: −→ xL − – −→ xL;

while if r̂(xL) ≥ r(xL − –), the minimum resistance tree is given by

xL −→ – −→ 2– −→ ::: −→ xL − –:



investment, then there must be investment in any stable equilibrium.8

Suppose now that bargaining is conducted according to the rules of the
ultimatum game instead. Let IH be such that V (IH) − IH



and Moore (1999), who argue that the the hold{up problem tends to reappear
when parties cannot contract on the renegotiation procedure. Hart and Moore
instead assume that surplus from renegotiation is split with no regard to in-
vestment costs. The current paper suggests that this bargaining assumption
is questionable.

Appendix: Proofs

We start by proving Propositions 2 and 3. Let ‰(Q) denote the set of outcomes
associated with the absorbing set Q.

The following two lemmas are needed in order to prove Proposition 2.

Lemma 1 Let z1 < z2::: < zk be demands in D(I) for some I ∈ “. Assume
that the set of demands following I for agents in the relevant population is
{zl}kl



investment I is made, let all agents in the flrst population update, they now
believe that demand V (I) − zl is not made, and consequently will not make
demand zl. Hence these two demands have dissapeared and can not reappear,
which contradicts the assumption that Q is an absorbing set. Since Ml and Nl

can’t decrease, (I; yl) is a best response and xl is a best (behavioral) response
following I. Since they can’t increase every other strategy being played must
do as well, therefore the population is in equilibrium and Q is a singleton. 2

We are then ready to prove Proposition 2.

Proof of Proposition 2: Assume that Q is not a singleton. Since updating does
not change ofi{path beliefs, ‰



B has an incentive to change strategy. No new information has been revealed
(there were already agents playing (I; y),) and so no agent in population A
has an incentive to change his strategy. Therefore we are at a new equilibrium
with one more agent playing (I; y). By repeating this process we arrive at the
equilibrium µ′ in the Lemma. 2

Lemma 4 Let µ′ (‰(µ′) = {(I ′; y′; x′)}) be an equilibrium. If I 6= I ′ and
y − I ≥ y′ − I ′, then the population can get from µ′ to an equilibrium µ with
‰(µ) = {(I; y; x)} through a sequence of single mutation transitions.

Proof: In state µ′ let agents in population B drift to believe with certainty that
any agent in population A that invests I will demand y. This implies that for
all j in population B, xj(I) = x = V (I)− y. Let a single agent in population
A mutate to play (I; y) (no change to beliefs.)9 In the next period let all
agents in A update, they all observe that xj(I) = x for all j in population B.
If y − I > y′ − I ′ then their best response is (I; y) to which they all switch,
leaving them at an equilibrium µ with ‰(µ) = {(I; x; y)}. If y−I = y′−I ′ then
all agents in population A are playing a best response and we are at a new
equilibrium µ1 with ‰(µ1) = {(I; y; x); (I ′; y′; x′)}. An application of Lemma 3
gets us to a state µ with ‰(µ) = {(I; y; x)}. 2

Proof of Proposition 3: We need to demonstrate (i) that the population can get
from any equilibrium with an outcome not satisfying the Proposition’s char-
acterization to an equilibrium with an outcome which does satisfy it, through
a sequence of single mutation transitions, and (ii) that the population can
not depart from an outcome satisfying the characterization without at least
two simultaneous mutations. Step (i): by Lemma 3 we may consider only µ
such that ‰(µ) is a singleton. Let ‰(µ) = {(I; V (I) − x; x)}. If I 6= I∗ then
V (I∗) − – − I∗ > V (I) − x − I; so by Lemma 4 the population can get to
an equilibrium µL with ‰(µL) = {(I∗; V ∗ − –; –)}. If I = I∗ but x > xL and
V (Î)− – − Î ≥ V (I)− x− I, then by Lemma 4 the population can get to an
equilibrium µ̂ with ‰(µ̂) = {(Î ; V (Î)− –; –)}. Another application of Lemma 4
then gets the population to an equilibrium µL with ‰(µL) = {(I∗; V ∗ − –; –)}.
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to get following an investment of Î, which will lead them to play (following
updating) (Î ; V (Î) − –). As above, an application of Lemma 4 completes the
proof.

Step (ii): Consider some µ with ‰(µ) = {(I∗; y; x)}, and x ≤ xL. We must
show that a single mutation can only move the population to a state µ1 with
‰(µ1) = ‰(µ). Note flrst that for I 6= I∗, V (I) − – − I ≤ V (Î) − – − Î <
(V (I∗) − xL)(N − 1)=N − I∗ ≤ (V (I∗) − x)(N − 1)=N − I∗. Hence, agents
in Population A ¡ x)( µ¡x

x )

�[(st3 1 Tn)411



of mutations for a transition from a locally stable outcome to an outcome with
ine–cient investment (for comparison). Now, clearly, an agent in population
A will only change his investment if he thinks that he is going to get some-
thing better, and the best outcome that he could expect with an ine–cient
investment is (Î ; V̂ − –; –): Hence, the question becomes: how many agents in
population B have to mutatte to a higher demand to make the above outcome
better than maintaining e–cient investment?

Recall that xL ∈ {xM ; xM − –}:

Lemma 5 The number of mutations required to get from an equilibrium with
outcome (I∗; y; x) with x ≤ xL to an equilibrium with outcome (Î ; V̂ − –; –) is

r̂(x) = min{r|r > N(1− V̂−–−Î+I∗
V ∗−x )}.

Proof: To make agents change investment, r (the number of B agents who
mutate to a higher demand) must be large enough so that

N − r
N

(V ∗ − x)− I∗ < V̂ − Î − –; (1)

since updating agents change their actions only when they are not already
playing a best response. Solving for r yields the desired expression. 2

Lemma 6
(i) If µ is an equilibrium with outcome (I∗; y; x), and x < min{xM ; xNBS};

the easiest transition away from ‰(µ) µ) ⁄
583;jΩ/F15 1 0 0265−



From Proposition 3, we do not need to worry about x > xL, so all we need
to check is the case where x = xL = xM . If xM < xNBS; then we know that
r(x) ≥ r̂(x), because V ∗ − xM − – ≤ V̂ − – − Î.2

If x = xM > xNBS then we can not say any more than that the easiest
transition is to an equilibrium with an outcome of either (Î ; V̂ −–; –) or (I∗; y+
–; x−–). We already knew this, but since either one of these transitions gets us
easily to another locally stable set, and allows an easy construction of a tree
around the Nash bargaining solution and e–cient investment, it really does
not matter.

Next, we turn to the analysis of stochastic stability. We flrst consider the
number of mutations required to make a transition directly from an equilibrium
with outcome (I∗; y; x), (y = V ∗ − x) to one with outcome (I∗; y′; x′). Along
this transition we will not allow the level of investment to change for any agent.
Hence results in this section are essentially borrowed from Young’s bargaining
paper. Later we will worry about multi{step transitions in which one flrst
changes the investment and then changes the demand following the e–cient
investment.

Lemma 7 From an outcome (I∗; y; x) the easiest transition in which invest-
ment is at all times e–cient, but which ends with difierent demands, is to an
outcome (I∗; y′; x′) where x = x− –; x+ –; –; or V ∗ − –.

Proof: From Young (1993b) Lemma 1. 2

The idea is that if one population changes their demand, then the increase
in demand which will be least hard to get the other population to accept is
an increase of –; while the decrease in demand that is easiest to get the other
population to accept is a decrease all the way to –.

Lemma 8



(ii) If x = – then moving from x to



The proof when xL > xNBS proceeds exactly as above, except that in
the construction of £1 and ¡1, for x < xNBS one needs (µx; µ

′
x+–) and for

xNBS < x ≤ xL one needs (µx; µ
′
x−–). Note that r(x) < r(x + –) if x < xNBS

and r(x) > r(x+ –) if x > xNBS. 2

Finally, let us consider ultimatum bargaining. Some of the above lemmas
for the Nash demand game carry through with minor modiflcations: Lemma
1 applies, except that there can clearly only be one set of demands following
any investment. Obviously in an equilibrium, agents in population A accept
all demands made in that equilibrium, so that if two agents in B were mak-
ing difierent demands, then they would have difierent payofis following that
investment level, and one of them would imitate the other following updating.
Lemma 2 applies unchanged. Lemma 3 applies, but with the same caveat as
in Lemma 1. Lemma 4 applies, but the proof must be changed so that agents
in population B drift to believe that following an investment of I agents in
population A will reject any demand greater than y. Next, we need some
additional results.

Lemma 11 Let surplus be divided by the ultimatum game. The component
with the subgame perfect outcome, (IH ; V H − xmax(IH); xmax(IH)), is a subset
of the unique locally stable set.

Proof: This is established by showing ∃µH such that µH ∈ T (µ) for all equilibria
µ and such that ‰(µH) = {(IH ; V H−xmax(IH); xmax(IH))}. To do this, consider
an equilibrium µ which, by Lemma 3, we may assume to have single outcome,
‰(µ) = {(I; V (I) − x; x)}. Let population A drift to expect a demand of
xmax(I ′) following any investment I ′ 6= I, and to accept a demand of xmax(I)
following I. Let a single agent in population B mutate to demand xmax(I).
His demand will be accepted, and so if the rest of B update, then they will
imitate him. At this point agents in A expect a maximal demand to follow
all investments which makes (IH ; accept) their best choice. Hence when they
update they will shift to this strategy, and we arrive at the desired outcome.
2

Lemma 12 Let surplus be divided by the ultimatum game. Agents in popula-
tion A receive a payofi of at least V H − IH − xmax(IH) in every equilibrium.

Proof: This is the worst payofi that an agent could expect for investing IH .
Hence if an agent in A were recieving less than this, he would change his
investment to IH . 2

Lemma 13 Let surplus be divided by the ’ultimatum’ game. If V (I)−I−x ≥
V H − IH − xmax(IH); then there exists an equilibrium µ such that µ ∈ £L and
‰(µ) = (I; V (I)− x; x).

22



Proof: Immediate from Lemmas 11 and 4. 2

Note that of course if two outcomes give the same payofi to A, higher than
that given by the hold{up equilibrium, then there are equilibria in which both
outcomes are present. The above lemma is more a statement about the richness
out equilibria, not a restriction. The latter is the job of the previous lemma.

Proof of Proposition 5: From Lemmas 11, 12 and 13 we know that this is the
unique locally stable set, which Samuelson (1994) has shown must equal the
stochastically stable set. 2
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