Å·ÃÀ¿Ú±¬ÊÓƵ

Skip to main content

Onyx

The four members of Team Onyx

Team Members

  • Miles Blair
  • Cody Dinges
  • Gregory Entzel
  • Derek Glass

Problem

Many instrumentalists swear by using analog amplification and effects in opposition to digital alternatives to preserve high quality instrument tone that can get lost in digital sampling. Unfortunately this demographic is limited to expensive analog effects pedals for each desired effect, and the user interface associated with analog equipment is outdated and clunky. Instrumentalists typically have a large number of foot pedals, each with unique physical setting interfaces; such as potentiometer knobs, switches, sliders, and pushbuttons. This large effects setup causes serious wire management issues, prevents on-the-fly tone changes, and doesn't allow preset programming, all features that digital amplification and effects allow.

Concept Generation

Our aim is to create an analog effects suite in a combination tube amplifier that integrates all significant analog effects for a musician. The amplifier will oppose standards in amplifier user interface by utilizing wireless Bluetooth communication, a transmission protocol that will allow the creation of a smartphone or tablet application. The app will enable the musician to change typical settings they would see on an amplifier or effects pedals, such as spectral equalization, tone, volume, and gain. The application will feature menus for all the effects, allowing the user to set values for all options associated with that effect, such as high gain for distortion or depth with reverb. Moreover, the application will be programmable, allowing the musician to save presets on all effects and EQs to snap to various sounds with the press of a button. By avoiding knobs and buttons, this amplifier configuration will allow for a more seamless playing experience for the musician. Players can quickly cycle through well-designed analog effects without the clutter of a large pedal board. In fact, to replace the traditional foot pedals needed for specific effects triggering while playing, we will implement a small pedal board with low-profile and programmable buttons. Using the app, musicians can specify certain effects or presets to buttons on the board. By integrating a microprocessor with analog filter designs, we hope to remove the clutter and frustration associated with analog amplification to help maintain the true quality of analog waveforms in music.