Å·ÃÀ¿Ú±¬ÊÓƵ

Skip to main content

Cerberus

The five members of the Cerberus team

Team members:Ìý

  • Faisal Albirdisi
  • Tegan Argo
  • Sarita Gautam
  • Evan Lamson
  • Wyatt Mohrman
  • Aleksey Treskov

By submerging a computer into a non-conductive fluid, we could redirect and reclaim thermal energy while the computer is on. The reclamation process involves absorbing thermal energy - using the thermoelectric effect from the components of a computer through mineral oil (non-conductive) and using that heat to create a temperature difference between the two sides of a Seebeck Electric Generator (thermocouple). That in turn will allow us to pull some charge and reclaim some of the energy we lose. The benefit of submerging a computer into a non-conductive fluid is an increase in thermal dissipation that results in an increase in the speed of operation and voltage ratings of the components while lowering the overall resistance of the machine. We want the computer to operate at a higher voltage and a higher clock speed and reclaim the extra energy to make the system faster while lowering our overall energy usage.

The scope of this project will be to transfer the energy dissipated by the internal resistance of computer components into a state where the energy can be recollected in the form of electricity. A power boosting circuit will be built in order to step up the voltage collected from an array of thermo generators that are installed. This will allow us to use the energy reclaimed in various applications. The initial concept is to submerge the computer in a nonconductive fluid. The internal resistance of the computer will then heat the nonconductive fluid to a higher temperature. Nonconductive fluid provides a medium that allows transfer and redirection of the thermal energy dissipated from the computer, thus cooling down the computer. The hot side of the thermo generators will raise its temperature by being in direct contact with the fluid while the cold side will maintain its temperature by being in contact with cold water. It's important to note that the fluids in both mediums will be circulated using hydro pumps.

So far the project doesn't sound too electrical but a crucial part of the project will be building an efficient control system. This system will be made of several temperature, pressure, and flow rate sensors that will communicate with the computer and the power circuit using a microcontroller. The system will allow us to have control over the clock/processing speeds of our computer as well as the flow rates of our fluids, all while decoding data coming from our sensors in order to assure the computer is functioning properly. For example, if the temperature of the cpu is rising outside of our desired operating temp, our control system will increase the flow rate to dissipate heat faster. If increasing flow rates isn't enough, and the temperature continues to rise, the control system will automatically slow down the clock speed to generate less heat. In addition to all of that, several monitors will be installed that will provide real time feedback for how the system is functioning, and we will create a user interface, allowing the user to choose between different modes of operation and observe via the monitors how the control system reacts to the given inputs in order to ensure overall efficiency.