Abstract
Rationale
Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a murine model of allergic asthma. Recent studies also demonstrate that immunization with M. vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae are not known.
Objectives
Our objective was to identify and characterize novel anti-inflammatory molecules from M. vaccae NCTC 11659.
Methods
We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri [Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine peritoneal macrophages.
Results
The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent in PPARα-deficient mice.
Conclusion
Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, and anxiety- and fear-related defensive behavioral responses.






Similar content being viewed by others
Abbreviations
- CD:
-
Cluster of differentiation
- CNS:
-
Central nervous system
- DC:
-
Dendritic cell
- DSM-5:
-
Diagnostic and Statistical Manual of Mental Disorders (5th ed.)
- IL:
-
Interleukin
- IFN:
-
Interferon
- IRF:
-
Interferon regulatory factor
- LPS:
-
Lipopolysaccharide
- MGB:
-
Microbiota–gut–brain
- NCTC:
-
National Collection of Type Cultures
- NF-κB:
-
Nuclear factor kappa-light-chain-enhancer of activated B cells
- PEA:
-
Palmitoylethanolamide
- PPAR:
-
Peroxisome proliferator-activated receptor
- PTSD:
-
Posttraumatic stress disorder
- RAR:
-
Retinoic acid receptor
- TGFβ:
-
Transforming growth factor beta
- TLR:
-
Toll-like receptor
- Treg:
-
Regulatory T cell
References
Adams VC, Hunt JRF, Martinelli R et al (2004) Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. Eur J Immunol 34:631–638. https://doi.org/10.1002/eji.200324659
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorder (5th ed.). American Psychiatric Association, Arlington, VA
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106
Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638
Arteaga Figueroa L, Abarca-Vargas R, García Alanis C, Petricevich VL (2017) Comparison between peritoneal macrophage activation by Bougainvillea xbuttiana extract and LPS and/or interleukins. Biomed Res Int 2017:1–11. https://doi.org/10.1155/2017/4602952
Baxter AJ, Scott KM, Vos T, Whiteford HA (2013) Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychol Med 43:897–910
Benko S, Love JD, Beládi M, Schwabe JWR, Nagy L (2003) Molecular determinants of the balance between co-repressor and co-activator recruitment to the retinoic acid receptor. J Biol Chem 278:43797–43806. https://doi.org/10.1074/jbc.M306199200
Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477. https://doi.org/10.1038/nature07202
Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17:461–463
Bloomfield SF, Rook GA, Scott EA et al (2016) Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health 136:213–224. https://doi.org/10.1177/1757913916650225
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Böttger EC, Hirschel B, Coyle MB (1993) Mycobacterium genavense. Int J Syst Bacteriol 43:841–843. https://doi.org/10.1099/00207713-43-4-841
Burfeind KG, Zhu X, Levasseur PR, Michaelis KA, Norgard MA, Marks DL (2018) TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav Immun 73:364–374. https://doi.org/10.1016/j.bbi.2018.05.021
Chan KL, Pillon NJ, Sivaloganathan DM, Costford SR, Liu Z, Théret M, Chazaud B, Klip A (2015) Palmitoleate reverses high fat-induced proinflammatory macrophage polarization via AMP-activated protein kinase (AMPK). J Biol Chem 290:16979–16988. https://doi.org/10.1074/jbc.M115.646992
Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457
Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505
Chinetti G, Fruchart JC, Staels B (2003) Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol 14:459–468. https://doi.org/10.1097/01.mol.0000092630.86399.00
Choi JM, Bothwell ALM (2012) The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cell 33:217–222
Chou S, Chedore P, Kasatiya S (1998) Use of gas chromatographic fatty acid and mycolic acid cleavage product determination to differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis. J Clin Microbiol 36:577–579
Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145. https://doi.org/10.1046/j.1365-2672.2003.01814.x
Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Sciences, National Research Council of the National Academies (2011) Guide for the Care and Use of Laboratory Animals. The National Academies Press, Washington D.C.
Coyle MB, Carlson LDC, Wallis CK et al (1992) Laboratory aspects of Mycobacterium genavense, a proposed species isolated from AIDS patients. J Clin Microbiol 30(12):3206–3212
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. https://doi.org/10.1038/nrn3346
Cryan JF, Dinan TG (2015) More than a gut feeling: the microbiota regulates neurodevelopment and behavior. Neuropsychopharmacology 40:241–242
Cunningham C (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284. https://doi.org/10.1523/jneurosci.2614-05.2005
Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia. 61:71–90. https://doi.org/10.1002/glia.22350
Cunningham C, Campion S, Lunnon K, Murray CL, Woods JFC, Deacon RMJ, Rawlins JNP, Perry VH (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312. https://doi.org/10.1016/j.biopsych.2008.07.024
Draper E, DeCourcey J, Higgins SC, Canavan M, McEvoy F, Lynch M, Keogh B, Reynolds C, Roche HM, Mills KHG, Loscher CE (2014) Conjugated linoleic acid suppresses dendritic cell activation and subsequent Th17 responses. J Nutr Biochem 25:741–749. https://doi.org/10.1016/j.jnutbio.2014.03.004
Duan W, Croft M (2014) Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc 11:S306–S313. https://doi.org/10.1513/AnnalsATS.201401-028AW
Esposito G, Capoccia E, Turco F, Palumbo I, Lu J, Steardo A, Cuomo R, Sarnelli G, Steardo L (2014) Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut 63:1300–1312. https://doi.org/10.1136/gutjnl-2013-305005
Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16. https://doi.org/10.1016/j.bbi.2009.05.058
Foryst-Ludwig A, Kreissl MC, Benz V, Brix S, Smeir E, Ban Z, Januszewicz E, Salatzki J, Grune J, Schwanstecher AK, Blumrich A, Schirbel A, Klopfleisch R, Rothe M, Blume K, Halle M, Wolfarth B, Kershaw EE, Kintscher U (2015) Adipose tissue lipolysis promotes exercise-induced cardiac hypertrophy involving the lipokine C16:1n7-palmitoleate. J Biol Chem 290:23603–23615. https://doi.org/10.1074/jbc.M115.645341
Fox JH, Hassell JE, Siebler PH et al (2017) Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 66:70–84. https://doi.org/10.1016/j.bbi.2017.08.014
Frank MG, Fonken LK, Dolzani SD, Annis JL, Siebler PH, Schmidt D, Watkins LR, Maier SF, Lowry CA (2018) Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav Immun 73:352–363. https://doi.org/10.1016/j.bbi.2018.05.020
Garn H, Bahn S, Baune BT, Binder EB, Bisgaard H, Chatila TA, Chavakis T, Culmsee C, Dannlowski U, Gay S, Gern J, Haahtela T, Kircher T, Müller-Ladner U, Neurath MF, Preissner KT, Reinhardt C, Rook G, Russell S, Schmeck B, Stappenbeck T, Steinhoff U, van Os J, Weiss S, Zemlin M, Renz H (2016) Current concepts in chronic inflammatory diseases: interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol 138:47–56. https://doi.org/10.1016/j.jaci.2016.02.046
Garton NJ, Christensen H, Minnikin DE et al (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958. https://doi.org/10.1099/00221287-148-10-2951
Gebert MJ, Delgado-Baquerizo M, Oliverio AM Webster TM, Nichols LM, Honda JR, Chan ED, Adjemian J, Dunn RR, Fierer N (2018) Ecological analyses of mycobacteria in showerhead biofilms and their relevance to human health. MBio 9:e01614–18. https://doi.org/10.1128/mBio.01614-18
Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G, Manzo I, Furiano A, Rizzo A, Imperatore R, Iannotti FA, D’Aniello E, Piscitelli F, sca Rossi F, Cristino L, di Marzo V, de Novellis V, Maione S (2017) Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-00342-1
Gutzwiller MER, Reist M, Peel JE, Seewald W, Brunet LR, Roosje PJ (2007) Intradermal injection of heat-killed Mycobacterium vaccae in dogs with atopic dermatitis: a multicentre pilot study. Vet Dermatol 18:87–93. https://doi.org/10.1111/j.1365-3164.2007.00579.x
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome. 6:55. https://doi.org/10.1186/s40168-018-0439-y
Huang DW, Sherman BT, Lempicki RA et al (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923
Ji Y, Wang Z, Li Z, Liu J (2010) Modulation of LPS-mediated inflammation by fenofibrate via the TRIF-dependent TLR4 signaling pathway in vascular smooth muscle cells. Cell Physiol Biochem 25:631–640. https://doi.org/10.1159/000315082
Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5
Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371. https://doi.org/10.1016/j.molmet.2014.02.002
Kidani Y, Bensinger S (2012) Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev 249:72–83. https://doi.org/10.1111/j.1600-065X.2012.01153.x
Kilkenny C, Altman DG (2010) Improving bioscience research reporting: ARRIVE-ing at a solution. Lab Anim 44:377–378. https://doi.org/10.1258/la.2010.0010021
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36
Kishino S, Takeuchi M, Park S-B, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R, Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci U S A 110:17808–17813. https://doi.org/10.1073/pnas.1312937110
Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94:4318–4323. https://doi.org/10.1073/pnas.94.9.4318
Kota BP, Huang THW, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51:85–94
Langgartner D, Lowry CA, Reber SO (2018) Old friends, immunoregulation, and stress resilience. Pflugers Arch - Eur J Physiol 471:237–269. https://doi.org/10.1007/s00424-018-2228-7
Le Bert N, Chain BM, Rook G, Noursadeghi M (2011) DC priming by M. vaccae inhibits Th2 responses in contrast to specific TLR2 priming and is associated with selective activation of the CREB pathway. PLoS One 6:e18346. https://doi.org/10.1371/journal.pone.0018346
Leclercq S, Forsythe P, Bienenstock J (2016) Posttraumatic stress disorder: does the gut microbiome hold the key? Can J Psychiatr 61:204–213. https://doi.org/10.1177/0706743716635535
Lee SO, Hong GW, Oh DK (2003) Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri. Biotechnol Prog 19:1081–1084. https://doi.org/10.1021/bp0257933
Lee AJ, Cho KJ, Kim JH (2015) MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med 47. https://doi.org/10.1038/emm.2015.8
Lin JY, Tang CY (2007) Interleukin-10 administration inhibits TNF-alpha and IL-1beta, but not IL-6, secretion of LPS-stimulated peritoneal macrophages. J Food Drug Anal 15(1):48–54
Locci A, Pinna G (2017) Neurosteroid biosynthesis down-regulation and changes in GABAA receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol 174:3226–3241
Loscher CE, Draper E, Leavy O, Kelleher D, Mills KHG, Roche HM (2005) Conjugated linoleic acid suppresses NF-κB activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction. J Immunol 175:4990–4998
Lowry CA, Hollis JH, de Vries A et al (2007) Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. Neuroscience 146:756–772. https://doi.org/10.1016/j.neuroscience.2007.01.067
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW (2016) The microbiota, immunoregulation, and mental health: implications for public health. Curr Environ Health Rep 3:270–286. https://doi.org/10.1007/s40572-016-0100-5
Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24. https://doi.org/10.1007/978-1-4939-0897-4_1
Macovei L, McCafferty J, Chen T, Teles F, Hasturk H, Paster BJ, Campos-Neto A (2015) The hidden “mycobacteriome” of the human healthy oral cavity and upper respiratory tract. J Oral Microbiol 7:1–11. https://doi.org/10.3402/jom.v7.26094
Maier SF (2003) Bi-directional immune-brain communication: implications for understanding stress, pain, and cognition. Brain Behav Immun 17:69–85
Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300
Merico D, Isserlin R, Bader GD (2011) Visualizing gene-set enrichment results using the cytoscape plug-in enrichment map. Methods Mol Biol 781:257–277. https://doi.org/10.1007/978-1-61779-276-2_12
Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–41. https://doi.org/10.1016/j.psiq.2010.04.001
Miyamoto J, Mizukure T, Park SB, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, Ogawa J, Tanabe S (2015) A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290:2902–2918. https://doi.org/10.1074/jbc.M114.610733
Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG et al (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J Lipid Res 40:1426–1433. https://doi.org/10.1631/jzus.B1200175
Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JWR (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–3216. https://doi.org/10.1101/gad.13.24.3209
Nugent NR, Tyrka AR, Carpenter LL, Price LH (2011) Gene-environment interactions: early life stress and risk for depressive and anxiety disorders. Psychopharmacology 214:175–196
O’Donovan A, Cohen BE, Seal KH, Bertenthal D, Margaretten M, Nishimi K, Neylan TC (2015) Elevated risk for autoimmune disorders in Iraq and Afghanistan veterans with posttraumatic stress disorder. Biol Psychiatry 77:365–374. https://doi.org/10.1016/j.biopsych.2014.06.015
Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364. https://doi.org/10.1263/jbb.100.355
Ohue-Kitano R, Yasuoka Y, Goto T, Kitamura N, Park SB, Kishino S, Kimura I, Kasubuchi M, Takahashi H, Li Y, Yeh YS, Jheng HF, Iwase M, Tanaka M, Masuda S, Inoue T, Yamakage H, Kusakabe T, Tani F, Shimatsu A, Takahashi N, Ogawa J, Satoh-Asahara N, Kawada T (2018) A-linolenic acid–derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40. FASEB J 32:304–318. https://doi.org/10.1096/fj.201700273R
Okada H, Kuhn C, Feillet H, Bach J-F (2010) The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol 160:1–9. https://doi.org/10.1111/j.1365-2249.2010.04139.x
Pacífico C, Fernandes P, de Carvalho CCCR (2018) Mycobacterial response to organic solvents and possible implications on cross-resistance with antimicrobial agents. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00961
Paukkeri EL, Leppänen T, Sareila O, Vuolteenaho K, Kankaanranta H, Moilanen E (2007) PPARα agonists inhibit nitric oxide production by enhancing iNOS degradation in LPS-treated macrophages. Br J Pharmacol 152:1081–1091. https://doi.org/10.1038/sj.bjp.0707477
Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32
Pinna G (2018) Biomarkers for PTSD at the interface of the endocannabinoid and neurosteroid axis. Front Neurosci 12:482. https://doi.org/10.3389/fnins.2018.00482
Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG, Kopelman JM, Lowe KR, Wheeler KJ, Fox JH, Hassell JE Jr, Greenwood BN, Jansch C, Lechner A, Schmidt D, Uschold-Schmidt N, Füchsl AM, Langgartner D, Walker FR, Hale MW, Lopez Perez G, van Treuren W, González A, Halweg-Edwards AL, Fleshner M, Raison CL, Rook GA, Peddada SD, Knight R, Lowry CA (2016) Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci 113:3130–3139. https://doi.org/10.1073/pnas.1600324113
Rohleder N (2014) Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med 76:181–189
Roman-Nunez M, Cuesta-Alonso EP, Gilliland SE (2007) Influence of sodium glycocholate on production of conjugated linoleic acid by cells of Lactobacillus reuteri ATCC 55739. J Food Sci 72:140–143. https://doi.org/10.1111/j.1750-3841.2007.00347.x
Rook GAW (2009) Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 126:3–11. https://doi.org/10.1111/j.1365-2567.2008.03007.x
Rook GAW (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the “hygiene” or “old friends” hypothesis. Clin Exp Immunol 160:70–79. https://doi.org/10.1111/j.1365-2249.2010.04133.x
Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci 110:18360–18367. https://doi.org/10.1073/pnas.1313731110
Rook GAW, Rosa Brunet L (2002) Give us this day our daily germs. Biologist (London) 49:145–149
Rook GAW, Hamelmann E, Rosa Brunet L (2007) Mycobacteria and allergies. Immunobiology 212:461–473. https://doi.org/10.1016/j.imbio.2007.03.003
Rosa Brunet L, Rook G (2008) United States Patent Application No. US 2008/0004341 A1. Retrieved from https://patents.google.com/patent/US20080004341. Accessed 05 May 2019
Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ (2013) INTERFEROME v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41:D1040–D1046. https://doi.org/10.1093/nar/gks1215
Sasso O, Russo R, Vitiello S, Raso GM, D’Agostino G, Iacono A, la Rana G, Vallée M, Cuzzocrea S, Piazza PV, Meli R, Calignano A (2012) Implication of allopregnanolone in the antinociceptive effect of N-palmitoylethanolamide in acute or persistent pain. Pain. 153:33–41. https://doi.org/10.1016/j.pain.2011.08.010
Scheuerbrandt G, Bloch K (1962) Unsaturated fatty acids in microorganisms. J Biol Chem 237:2064–2069
Shacter E, Arzadon GK, Williams JA (1993) Stimulation of interleukin-6 and prostaglandin E2 secretion from peritoneal macrophages by polymers of albumin. Blood 82:2853–2864
Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75. https://doi.org/10.1172/JCI200519229
Smythies LE, Shen R, Bimczok D, Novak L, Clements RH, Eckhoff DE, Bouchard P, George MD, Hu WK, Dandekar S, Smith PD (2010) Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation. J Biol Chem 285:19593–19604. https://doi.org/10.1074/jbc.M109.069955
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M (2013) Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med 210:775–788. https://doi.org/10.1084/jem.20121849
Springer B, Kirschner P, Rost-Meyer G et al (1993) Mycobacterium interjectum, a new species isolated from a patient with chronic lymphadenitis. J Clin Microbiol 31:3083–3089
Stamper CE, Hoisington AJ, Gomez OM et al (2016) The microbiome of the built environment and human behavior: implications for emotional health and well-being in postmodern western societies. Int Rev Neurobiol 131:289–323. https://doi.org/10.1016/bs.irn.2016.07.006
Strickland D, Kees UR, Holt PG (1996) Regulation of T-cell activation in the lung: isolated lung T cells exhibit surface phenotypic characteristics of recent activation including down-modulated T-cell receptors, but are locked into the G0/G1 phase of the cell cycle. Immunology 87:242–249
Suutari M, Laakso S (1993) The effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Arch Microbiol 159:119–123
Szatmari I, Pap A, Rühl R, Ma JX, Illarionov PA, Besra GS, Rajnavolgyi E, Dezso B, Nagy L (2006) PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J Exp Med 203:2351–2362. https://doi.org/10.1084/jem.20060141
Tay STL, Hemond HF, Polz MF et al (1998) Two new Mycobacterium strains and their role in toluene degradation in a contaminated stream. Appl Environ Microbiol 64:1715–1720
Travar M, Petkovic M, Verhaz A (2016) Type I, II, and III interferons: regulating immunity to Mycobacterium tuberculosis infection. Arch Immunol Ther Exp 64:19–31
Verme JL, Fu J, Astarita G et al (2005) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19. https://doi.org/10.1124/mol.104.006353
Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116. https://doi.org/10.1038/nprot.2006.179
Watkins LR, Maier SF, Goehler LE (1995) Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci 57:1011–1026
Wollenberg GK, DeForge LE, Bolgos G, Remick DG (1993) Differential expression of tumor necrosis factor and interleukin-6 by peritoneal macrophages in vivo and in culture. Am J Pathol 143:1121–1130
Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-α and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81:403–411. https://doi.org/10.1002/jnr.20518
Yu HL, Deng XQ, Li YJ, Li YC, Quan ZS, Sun XY (2011) N-palmitoylethanolamide, an endocannabinoid, exhibits antidepressant effects in the forced swim test and the tail suspension test in mice. Pharmacol Rep 63:834–839. https://doi.org/10.1016/S1734-1140(11)70596-5
Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol 14. https://doi.org/10.1002/0471142735.im1401s83.The
Zuany-Amorim C, Sawicka E, Manlius C, le Moine A, Brunet LR, Kemeny DM, Bowen G, Rook G, Walker C (2002) Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 8:625–629. https://doi.org/10.1038/nm0602-625
Acknowledgements
We are grateful to Zachary D. Barger for proofreading the manuscript. We thank the University of Colorado Boulder BioFrontiers Institute Next-Gen Sequencing Core Facility, which performed the Illumina sequencing.
Funding
This work was supported by the National Institute of Mental Health (grant number 1R21MH116263; CAL). Dr. Christopher A. Lowry is supported by the Department of the Navy, Office of Naval Research Multidisciplinary University Research Initiative (MURI) Award (grant number N00014-15-1-2809), Department of Veterans Affairs Office of Research and Development (VA-ORD) RR&D Small Projects in Rehabilitation Research (SPiRE) (I21) (grant number 1 I21 RX002232-01), Colorado Clinical & Translational Sciences Institute (CCTSI) Center for Neuroscience (grant number CNSTT-15-145), the Colorado Department of Public Health and Environment (CDPHE; grant number DCEED-3510), and the Alfred P. Sloan Foundation (grant number, G-2016-7077). Dr. Robin Dowell is supported by NSF Career MCB #1350915.
Author information
Authors and Affiliations
Contributions
G.S.B. and P.A.I. isolated and synthesized 1,2,3-tri [Z-10-hexadecenoyl]glycerol. W.X. and X.W. developed a synthesis for 10(Z)-hexadecenoic acid and synthesized the compound. Experimental design was done by D.G.S., R.M., G.S.B., G.A.W.R., L.R.B., and C.A.L. L.N. and P.A.I designed the PPAR luciferase-based transfection assay experiments. In vivo screening and experimentation was performed by R.M. and L.R.B. In vitro experiments using freshly isolated murine peritoneal macrophages were performed by D.G.S. Transfections and reporter gene assays were performed by I.S. and P.B. RNA-seq data processing and analysis was done by D.G.S., R.D.D., and M.A.A. Experimental design and preparation of the manuscript were done by D.G.S., R.M., G.S.B., L.N., G.A.W.R., L.R.B., and C.A.L.
Corresponding authors
Ethics declarations
All experimental protocols were consistent with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, Eighth Edition (The National Academies Press 2011), and the Institutional Animal Care and Use Committee at the University of Colorado Boulder approved all procedures. This work was covered under CU Boulder IACUC Protocol Numbers 2134-14MAY2018 and 2361-14MAY2018-DT. The research described here was conducted in compliance with The ARRIVE Guidelines: Animal research: reporting of in vivo experiments, originally published in PLOS Biology, June 2010 (Kilkenny and Altman 2010).
Conflict of interest
Christopher A. Lowry serves on the Scientific Advisory Board of Immodulon Therapeutics Ltd. Dr. Robin Dowell is a founder and scientific advisor of Arpeggio Biosciences.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to a Special Issue on Microbiome in Psychiatry & Psychopharmacology.
Electronic supplementary material
ESM 1
(DOCX 798 kb)
Rights and permissions
About this article
Cite this article
Smith, D.G., Martinelli, R., Besra, G.S. et al. Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology 236, 1653–1670 (2019). https://doi.org/10.1007/s00213-019-05253-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-019-05253-9