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approximation methods for solving partial differential and integral equations in higher
dimensions, where the ability to construct near optimal rational (or exponential) ap-
proximations to functions of one variable is a key component.

Since the seminal result in [21], it has been known that functions with singulari-
ties may be efficiently approximated in the L*> norm using proper rational functions.
Indeed, the number of poles required to approximate a function with singularities is
directly related to the sparsity of the function’s wavelet coefficients (see [16, Theorem
11.1]). However, in contrast to more traditional L2-type methods (using e.g., wavelet
bases as in [2|), the use of such optimal L*>-type approximations in numerical analysis
has been limited due to a lack of efficient and robust algorithms.

Given a proper rational function f, we present an algorithm—which we refer to as
the reduction algorithm—to compute, for a fixed number 20.8801030e
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many times. For example, in the context of solving Burgers’ equation with viscosity
v *A‘J.:S and approximation tolerance 1,\.._9, on the order of a million applications
of the reduction algorithm are !
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smaller number of poles. As mentioned earlier, our reduction algorithm is based on
a theorem of Adamyan, Arov, and Krein (|1]), which concerns the approximation of
a periodic function f, essentially bounded on the unit circle 0D, by a meromorphic
function r 2} (z | €*™ containing a specified number of poles in the unit disk. We
limit our pr&entatﬂ)n to rational functions f taking real values on 0ID. This case turns
out to be particularly important, as it allows us to develop a practical algorithm based
on approximating the Fourier series coefficients of ¥ with positive index. More general
functions  may be dealt with by using the techniques in
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The fact that there are exactly m zeros in the unit disk, corresponding to the
index m of the con-eigenvalue A, is a consequence of the AAK theory. Asshown
in Section 4.1 (see equations (4.8)), the key to the high accuracy of evaluating
the function v Q is the relationship

(2.4) BERRVARV/S SN v 1Y 2 R TS WO o

which, together with the n poles 1/Yj, uniquely determines v z>.
Step 3: Find the coefficients Bj of g Q by solving the m x m lir%ar system,
m

1 n Kot )

Denoting T —g X‘SUPxe[o,l] |f \e‘_z"i)q — g 72|, the resulting rational approxi-
mation g 2" satisfies f—@ o = ‘and, thus, Is close to the best L>®-error achievable
by rationaX functions with no more than m poles in the unit disk (see also [25] for a

discussion of optimal rational approximations).

Remark 1. In Step 3, we solve for the coefficients B; in O m?* operations by exploiting
the structure of Cauchy matrices (see |11, 7]). We note tha¥ such a solver may require
quadruple precision if the overall desired approximation error is smaller than = 1g71°.
However, since m | og _~!*is small, Step 3 for finding coefficients B; does not impact
the overall speed ofkihe algorithm even if performed in quadruple precision.

Remark 2. In applications where the function f ¥ has singularities or sharp tran-
sitions, the poles yj in the rational representation of f 2™ may be located very close
to the unit circle (and/or to each other). In such cases,’t is advantageous to maintain
the poles in the form y; | &p ;Tj“, since they are well separated on a logarithmic

scale. Importantly, the reduction algorithm computes the new pples
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(r < 1). This estimate shows that, for accuracy , we may reasonably expect O og —1

terms in our approximation. In fact, we have observed A
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using (2.4) to rewrite (2.3) as

LoV oy
) \I—\—. AmV 2,
i Y \ X

we see that
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to the known eigenvalues By, ..., Bm_1, one by one. We then orthogonalize these m — 1
vectors using the stabilized Gram-Schmidt procedure, thus yielding a basis Gy, ..., qm_1
for the invariant subspace span{Qi,...,0m-1} span{Qi,...,0m_1}. Finally, we use
simultaneous inverse iteration applied to Q,...,0m_1,0, where q is chosen randomly.

Notice that each step of this process8ess
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depend on the timestep t, the number My of quadrature nodes in time, and the number
of quadrature nodes My used in space to discretize the convolution kernels. From the
rapid decay of the periodic heat kernel,

Y = OHO/ (V).
~N vt Z

wherg V is the viscosity parameter in (3.1), it follows that (pp and l]J;J are localized to a
O ( vt) neighborhood of X |g (see Section 4.2 for details).

We assume that the initial function u X{.: “‘uo X} is given as a periodic rational
function of the form N X

Ky

Mo
aj e}
Uo ‘Xy l‘z —2mix ‘!Z 2MiX — - ‘Go,

and that this representation is nearly optimal. We then solve the system of equations
(3.2) by approximating each function uj using the reduction algorithm. We obtain, via
fixed point iteration applied to (3.2) and the reduction algorithm, rational functions
u; X> of the form,

A

M;

[eF )
3.3 u x> — 0,
( ) | \‘\ ‘Z e—2T[|X —_ yJ I ‘JZ:L eZT[IX —_ y _I “ 0

which solve (3.2) to a specified level
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FIGURE 3.3. Solutionu X, t*at timet . ,localized about the transition
region A/ 9— 'y 51/ 9 d.: % Note th‘é absence of any Gibbs-type phe-

nomena. -
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Suppose T L* has the
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we calculate from (4.4)

[e'e) M o M _ [e's) )

> (Lt )u S vk
\ m=1 j=1

M
‘ OmY Vv v L ow;.
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Now multiplying both sides of the last equation by z'~! and summing, we obtain

M
Om 1y, -1
4.6 ————V V' 0Z7°W Z7
Similarly, from (4.5), we have

o0 M M o0
> <Z “my'“iﬂ_Z) Wi OmYm' YV
m=1 j=1

\ Zmi‘l (Ve 'w (Vm ) 1‘0Vi-

Finally, multiplying by z'~! and summing, we arrive at

M _
Om 1 (o—1 \
4.7 E R — ; Y,
w0 2 1oy W) v

Hence, for a function f of the form (4.3), the functions v and w in (4.2) turn out to
be rational and fully determined by their values at the poles of f. Taking z Yy and
z *“yn in equations (4.6) and (4.7), respectively, we obtain !

M
>
m=1
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1
Let us define the vectors p and g with entries pm ;‘O(rQnV w,‘ , Om *“U_nllzy_m‘lw \E‘l‘,
and the positive definite matrix C with entries . .

1

OOl 2
Cmn \ .
~ YmYn

Then the above equations are equivalent to

Cp | oq,

_ v

Cq iy OP:

which may be reduced to a con-eigenvalue problem for 0 > g, see [15, Section 4.6]. One
simple way to see this and obtain an equation of the form (2.2) is by defining X k‘p -

If X g then iq |ip and hence
‘u ! C IQ\ ;‘O-m

If x k‘ﬁ we have
Cx ,0X

and, in both cases, we obtain a con-eigenvalue problem for the matrix C.

4.2. Discretization of Burgers’ equation. We rewrite the equation (3.1) in semi-
group form (see, e.g., [14, 17, 18, 3|)

t
4.9 ut e'tu g /e"(t‘r)'-N u T)dt,
(49) A A AL

where U t* denotes the function u ., t*. The operator L, Lu X* | Uxx, represents the
linear paﬁ\ of (3.1) while the opera%r N, N u |1/ U2, %pre‘sents the nonlinear
part. The action of the operator eV on a fun(}ion‘f is g‘/en by

1

(evth) X(\ ,“/5 Kv %txf \X(— y*dy, with Kv wty x‘*‘ 'l‘ Ze—(y+k)2/(4vt)_

v =

[NIES

To discretize equation (4.9) in time, we use the approximation

M
N uth= Ri N u ", T t

where {T; }JM=’51 denote the Gauss-Legendre nodes on the interval ﬁty, and Rj 1} denote
the Legendre interpolating polynomials for these nodes, i.e., X
Rj Ip.’ Ojm, for j,m 1,..., M.
i @ \m ly
Taking t l‘Tl in (4.9), we obtain the semi-discrete system of equations

M

T
4.10 ur e'%tug (/ eV(u-OLR, 1>dT)N ud, 1M,
(110 e () SNy t

where uj 'x‘ul )Q denote the computed values of U at time t v“n and Uy U X .
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For the spatial discretization, using N u“ 1‘»‘/ P) \U‘ZWX and
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