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The theory of diffraction tomography for two-dimensional objects within the Born approximation 
is presented for cases where the scattered field is measured over arbitrarily shaped boundaries 
surrounding the object. Reconstruction algorithms are presented for both plane wave (parallel 
beam) and cylindrical wave (fan beam) insonification. within the Born and Rytov approximations is usually 

developed for the parallel beam, classical tomographic geometry illustrated in figure 1 [l-51. For 
this geometry the object is insonified by a plane wave and the scattered field is measured over a 
plane surface which is parallel with the incident wavefront. The receiver surface rotates about a 
central point in the object as different directions of insonification are employed and the goal is to 
reconstruct the object’s properties (eg., acoustic velocity profile) from the set of scattered field 
measurements so obtained. 

In this paper we consider more general over 
arbitrarily shaped surfaces surrounding the object- one surface for each location of the surface La. In either 

case the measurement surface Z can remain fixed throughout the sequence of experiments or, 
alternatively, can vary from experiment to experiment. 

A brief review of the foundations of diffraction tomography within the Born approximation is 
presented in Section 2. For the 

sake of simplicity only two-dimensional objects will be considered 
here and throughout the remainder of the paper. The final section describes how the results 
obtained in the paper can be generalized to the three-dimensional case. The plane wave 
scattering amplitude of an acoustic object is defined and shown to be proportional to the spatial 
Fourier transform of the “object profile” evaluated on circles in Fourier space which are the two- 
dimensional analogues of the well known Ewald spheres of X-ray crystallography I6,71. For the 
classical tomographic configuration shown in figure 1 the scattering amplitude is also shown to be 
proportional to the spatial Fourier transform of the scattered field over the c 0.4899  Tw (c 0.489ms5E31428cu-  Tc 0.49es )7 0  TD 3  Tr -0.1074  Tc -0.4927  Tw (the ) Tj
0  Tr 19.6877 0  s.6877 0  TD 3  TrsF3pmTj
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Fig. 2 Parallel beam insonification with arbitrary shaped measurement surface Z 

Fig. 3 Fan beam insonification with arbitrary shaped measurement surface E and arbitrary source 
surface IO. 
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2. DIFFRACTION TOMOGRAPHY WITHIN THE BORN APPROXIMATION 

We consider the situation illustrated in figure 2 of an acoustic object surrounded by an arbitrary 
measurement surface X. We shall limit our attention to those applications where the wave 
propagation is governed by the inhomogeneous Helmholtz equation 

6” + k’)+(r) = k20(r)$(‘) (1) 

Here, k = w/C, is the wavenumber of the field in the medium surrounding the object at frequency 
w and O(I) is the “object profile.” For acoustic scattering, Eq. (1) applies if the density of the 
object is constant and equal to that of the embedding medium and if the shear modulus of the 
object and embedding medium are negligible 121. The theory and results developed below can, 
however, be generalized to the non-constant density case following section, the insonifying wave is a plane wave whose unit propagation vector & lies in the 

x-y plane. Cylindrical waves having axes aligned parallel to the z axis are considered in Section 4. 
For both of these cases the field +(L) will depend only on the x-y coordinates so that the wave 
equation (1) is a two-dimensional equation. 

The object profile 00 is the quantity which is to be determined in diffraction tomography. 
This quantity is related to the velocity 
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the direction of s i e a, ., 

general, that 

both the scattered field and its normal 
derivative be measured over the surface. We shall present, in the following section, a 
generalization of Eq. (4) to arbitrarily shaped measurement boundaries that differs somewhat from 
the extension proposed by Porter [lOI. 

The scattering ampiitude plays a fundamental role in inverse scattering and diffraction 
tomography. Within the Born approximation, f(S,sJ reduces to the two-fold spatial Fourier 
transform of O(I) evaluated over certain circular boundaries in Fourier space (Ewald spheres in the 
three-dimensional case). This result follows immediately upon substituting the insonifying field 
exp(iks.Ll for $Cr& in Eq. (3) (i.e., making the Born approximation). We obtain 141 

where 

(7) 

denotes the two-fold spatial Fourier transform of the object profile. 

Eq. (61 states that the scattering amplitude f(s,al determines the two-fold Fourier transform of 
the object profile over the locus of & values defined by the equation 

For fixed k and %, Eq. (81 defines a locus of I$ values lying on a circle centered at & = - k& and 
having a radius equal to k. As discussed in references 4 and 5, the above result is, essentially, the 
generalization of the projection-slice theorem of x-ray tomography of insonification) a set of semicircular interpolation or Fourier inversion. In the case of 

two-dimensional objects the formula is given by 14, 5, 141 

where x0 and x are, respectively, the angles formed by & and s with a fixed reference direction. 
The subscript “LP” on O(rJ means that a “low pass filtered” approximation to the object profile is 
obtained; i.e., 

O&) = -!-- &,zkd2KbQ)eigr 
(2nS 
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The inversion formula (9) forms the basis for the filtered backpropagation algorithm for parallel 
insonification x0); 

(ii) summing over view angles. We define the partial reconstruction as 

It then follows from Eq. (9) that OLD is given by 

The construction of 6(1, x0) according to Eq. (1 la) can be interpreted as a filtered backpropagation 
process while Eq. (lib) represents a sum over view angles 14, 

51. 

3. PARALLEL BEAM INSONIFICATION 

Our primary goal in this section is to provide a formula for determining the scattering amplitude 
from field measurements performed over the arbitrary measurement boundary Z. The function 
f(x,s) so obtained can then be employed in Eq. (9) (or, equivalently in Eqs. (11)) to obtain a 
reconstruction of the object profile. 

Porter [lOI has(the ) Tj
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In practice it is possible to obtain an exact relationship between the scattering amplitude f&J 
and either I)“’ or & 
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where dl, is the differential length on Za, PO the unit outward normal to PO and a denotes the 
an, 

derivative along the Go direction. 

Eq. (21) is in the form of a linear mapping between the cylindrical wave scattering amplitude 
and its derivative with respect to n, and the plane wave scattering amplitude f(&. Since the 

derivative -& ~(5; l&J cannot be computed from measurements of $“‘(I; I&) for fixed I&, it is 

important to rimove this quantity from Eq. (21). This can be done exactly for cases where Z,, is a 
separable boundary. For example, when Za is a straight line one finds one g (shl) Tj
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Table I. Scattering amplitude in different cases 

I;,, I circles = 4i~dpjd~Jl’~‘(rr;p)Fa(X--)Fa,(P-Xa) 
--n -n 

Z,, 2 arbitrary but 

with weak curvature 
= -&2Qd/,(&,.a) Qdr’(B’.s)Jl’s’(r’;~~)e-ik’~~‘-~’5’ 

-m -m 

the result is employed in Eqs. (22)-(24) to compute f(2.s). By combining these equations, the two 
steps can be combined into a single integral transform relating the cylindrical wave scattering data 
directly to the plane wave scattering amplitude. Table I lists these transforms for cases where Z and 
Z0 are straight lines or circles and for cases where the curvature of both boundaries is small. 

The transformations listed in table I allow the plane wave scattering amplitude to be synthesized 
from cylindrical wave scattered field data. Once f(s.sJ is computed the plane wave filtered 
backpropagation algorithm as embodied in Eqs. (9) or (11) can be employed to obtain a 
reconstruction of the object profile. An alternative, one step reconstruction algorithm, is readily 
derived by substituting the transformations listed in table I into Eq. (9) and reorganizing the result. 
We present in table II the resulting reconstruction algorithms corresponding to the three cases - 
lines, circles and weakly curving boundaries - covered in table I. 

Table II. Reconstruction formulae in different 
08.988 of source-receiver geometry 

Geometry ( Reconstruction 

&,I; arbitrary 

but 
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The reconstruction algorithms presented in table II are “fan beam” algorithms in the sense that 
they operate directly on the measured cylindrical wave scattered field data. Like the plane wave 
filtered backpropagation algorithm presented in Section 2. they can be decomposed into two 
sequential operations: 

I. Generating a partial reconstruction using data collected in a single scattering experiment 

2. Summing the partial reconstructions obtained in step 1 from different experiments to obtain 
the final reconstruction. 

In table II the inner integral represents step 1 while the sum over partial reconstructions is 
performed by the outer integral. In the plane wave case, the sum over experiments consisted of 
summing over different insonifying angles x0. Clearly, for fan beam insonification (cylindrical wave 
insonification) the sum over experiments corresponds to an integral over source points I&. 

We conclude by remarking that the fan beam reconstruction algorithm for circular boundaries 
given in table II is the generalization, to diffraction tomography, of the x-ray fan beam algorithm 
presented, for example, in 1171. The parallel beam filtered backpropagation algorithm of diffraction 
tomography is known to reduce, in the limit where the wavelength goes to zero, to the filtered 
backprojection algorithm of x-ray tomography 141. It should then be expected that the circular 
boundary fan beam algorithm in table II should, likewise, reduce in this limit to the corresponding 
X-ray algorithm. We have not yet been able to establish this reduction and consider this an 
interesting and important future research goal for fan beam diffraction tomography. 

5. CONCLUDING REMARKS 

We have, in this paper, shown how the theory and algorithms of parallel beam diffraction 
tomography within the Born approximation can be extended to cases where the scattered field is 
measured over arbitrarily shaped boundaries surrounding the object. In addition, we presented two 
reconstruction procedures for fan beam diffraction tomography. The first of these is a two-step 
inversion algorithm where plane wave scattering data is synthesized from cylindrical wave scattering 
data in the first step and the object profile is reconstructed in the second step using the parallel 
beam (plane wave) filtered backpropagation algorithm on the synthesized plane wave data. The 
second algorithm combines these two steps into a single “fan beam filtered backpropagation 
algorithm.” In this method the reconstruction of the object profile is obtained by summing 
reconstructions corresponding to a single fixed location of the source. over the source point 
locations. 

The results presented in the paper apply only to two-dimensional objects; i.e., objects whose 
properties are constant in one direction. They are readily extended, however, to the three- 
dimensional case. This extension can be performed in two ways. The first of these simply requires 
that the measurement boundary Z be replaced by a surface Z formed by sweeping the I boundary 
along the perpendicular to the plane in which Z lies. Thus, for example, for the case of a circular 
boundary i is a circular cylinder while for a line boundary 2 becomes a plane surface. The 
treatment presented in the paper then applies for three-dimensional objects enclosed by 2 if the 
two-dimensional scattered field measurements performed over Z are projected onto the boundary 
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dimensional case. The three-dimensional form of the inversion formula (9) is given by 114,181. 

(26) 

where dnSO and da, are differential solid angles and the integrals are over 47r steradians. By 
employing Eq. (26) together with the appropriate three-dimensional generalization of the 
expressions for the scattering amplitude given in table I, three-dimensional reconstruction 
algorithms analogous to those given in Table II can be readily obtained. 

APPENDIX 



by $(r;r’I and subtracting the two resulting 
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