On Generalized Gaussian Quadratures for Exponentials and Their Applications

G. Be $lkin^1$ and L. Mon n^2

Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB, Boulder, Colorado 80309

Communicated by Vladimir Rokhlin

Recei ed J. ne 1, 2001; e i ed Jan. a 28, 2002

We int od ce ne_{y_c} familie of Ga ian-t pe q ad at e fo $_{y_c}$ eighted integ al of ∞ ponential f nction and con ide their application to integration and interpolation of bandlimited f nction.

We e a gene ali ation of a ep e entation theo em d e to Ca ath odo to de i e the e q ad at e . Fo each poiti e mea e, the q ad at e a e pa amete i ed b eigen al e of the Toeplit mat ix. con t cted f om the t igonomet ic moment of the mea e. Fo a gi en acc ac the fo m

$$c_k = \sum_{j=1}^{M} {}_{j} e^{i {}_{j} k},$$
 (1.1)

fo k = 1, 2, ..., N and M N, where -1 < j 1 and j > 0. Ca all odo ep e entation (1.1) has been the formation for a number of algorithm for pectral e timation; in partice la, [20] i know n in electrical engineering literate era the Pi a enkor method. In this paper we de elop a fart algorithm for noting M, the phase T015 A a method fo cont cting gene ali ed Ga ian q ad at e, o e It a elimited to integ al (w, ith a fail a bit a mea e) in ol ing exponential . O algo ithm in ol e nding eigen al e and eigen ecto of a Toeplit mat is cont cted f om t igonomet ic moment of the mea e and then comp ting the oot on the nit ci cle fo app op iate eigenpol nomial. In patic la, each eigenpol nomial with di tinct oot gi e i e to an identit which, fo mall eigen al e, p o ide with a Ga ian-t peq ad at e and al o with a ep e entation of po iti e de nite He mitian Toeplit mat ice. In the eidentite the i e of the eigen al e dete mine the acc ac of the q ad at e fo m la.

It tn o that in the call of the $_{W}$ eight leading to PSWF, the node of the collector e ponding Ga ian q ad at e a e e o (app op iatel called to the interval [-1, 1]) of dicete PSWF collector mall eigen all e.

A an application, we the new q ad at.7(I)-4.9(n)-199.2gTj/Fx.7ng2(cted)cTj4o2a 4.7

The pape i o gani ed a $foll_{0_{x}}$. We pe ent a b ief de c iption of the Pi a enko method to obtain the cla ical Ca ath odo ep e entation and we de i e the e timate (1.2) in Section 2. In Section $3_{v_{x}}$ e di c. gene ali ed Ga ian q ad at e for we eighted integ al and po e ome of theip ope tie for we eight pop ted in ide [-1/2, 1/2]. In Section $4_{v_{x}}$ e int od ce new familie of Ga ian-t pe q ad at e. We de elop a fat algo ithm in Section 5 to comp te the node and we eight of the eq ad at e. We ol e the app oximation p oblem (1.3). (1.5) in Section 6 and e it in the next $t_{v_{x}}$ o ection to obtain q ad at e and inte polating ba e for bandlimited f nction. We all o di c a io example to ill t ate the e e. It Finall, concl. ion a ep e ented in Section 9.

2. CARATHÉODORY REPRESENTATION

Ca ath odo ep e entation ol e the t igonomet ic moment p oblem and can be tated a $foll_{q_r}$ (ee [8, Chap. 4]).

THEOREM 2.1. Given N complex numbers $\mathbf{c} = (c_1, c_2, ..., c_N)$, not all zero, there exist unique M N, positive numbers $\boldsymbol{\rho} = (1, 2, ..., M)$, and distinct real numbers 1, 2,..., M

2.1. Algorithm I: Method to Obtain M, θ , and ρ

(1) Gi en $c = (c_1, c_2, ..., c_N)$, $k \in extend the de nition of <math>c_k$ to negati e k a $c_{-k} = \overline{c_k}$ and $k \in de$ ne c_0 othat the $(N + 1) \times (N + 1)$ Toeplit mat $k \in T_N$ of element $(T_N)_{kj} = c_{j-k}$, ha nonnegati e eigen al e and at lea t one eigen al e i eq alto e o.

(2) Define M at the ank of T_N . B constitution, we have M. We also a that M is the rank of the epse entation (2.1).

(3) Let T_M be the top left p incipal branch is of o de M + 1 of T_N . That i, the mat is T_M has element $(c_{j-k})_0 \, k, j \, M$. Find the eigen ecto q co e ponding to the e o eigen all e of T_M .

(4) Cont. et the pol nomial (eigenpol nomial)_{k_i} ho e coef cient a ethe ent ie of the eigen ecto q. A ho_{k_i} n in [8, p. 58], the M oot of thi eigenpol nomial a e di tinet and ha e ab ol te al e 1. The pha e of the e oot a ethe n mbe j.</sub></sub>

(5) Find the v eight ρ b ol ing the Vande monde tem (2.1) fo k = 1, ..., M. The v ill, in addition, at if $\sum_{k=1}^{\infty} k = c_0$.

Remark 2.1. With the exten ion of the eq ence c_k , (2.1) i alid fo |k| = N. If $q = (q_0, \ldots, q_M)$ i the eigen ecto obtained in pat (3) of Algo ithm 2.1, then

$$\sum_{k=0}^{M} c_{k+s} q_k = 0, \qquad (2.2)$$

fo all s, -N = s 0. In othe w od, w e ha e fo nd an o de -M ec. ence elation fo the o iginal eq. ence $\{c_k\}_{k=1}^N$.

Remark 2.2. In pactice, we are interested in sing Ca athodo epe entation if M is mall compared with N, or more generally, if mot we eight are maller than the accord or ght. How ere, in scheduler, T_N has a large (normalized normalized normalised normalised normalised normalise

Ne e thele , if the eq ence c i thet igonomet ic moment of an app op iate k_{ij} eight, $k_{ij} e_{ijk}$ ill be able to modif the p e io method in o de to obtain the pha e j in an ef cient manne. In thi etting, the pha e and k_{ijk} eight in Ca ath odo ep e entation can be tho ght of a the node and k_{ijk} eight of a Ga ian-t pe q ad at e for k_{ijk} eighted integ al. Once the pha e a e obtained, Theo em 2.2 a e that the comp tation of the k_{ijk} eight i a_{ijk} ell-po ed p oblem. In Section 5.2 k_{ijk} e p e ent a fat algo ithm to obtain the k_{ijk} eight b e al ating ce tain pol nomial at the node e^{i j}.

Remark 2.3. Gi en an He mitian Toeplit mat is. T, let con ide it mallet eigen al e (N)

3. GENERALIZED GAUSSIAN QUADRATURES FOR EXPONENTIALS

3.1. Preliminaries: Chebyshev Systems

In thi ection $_{W}$ e collect ome de nition and e lt elated to Cheb he tem . We follow mo the Ka lin and St. dden [12] (ee al o [13]). Reade familia $_{W}$ ith thi topic ma kip thi ection.

A famil of n + 1 eal- al ed f nction u_0, \ldots, u_n de ned on an inte al I = [a, b] i a *Chebyshev system* (T- tem) if an nont i ial linea combination

$$u(t) = \sum_{j=0}^{n} j u_j(t)$$
(3.1)

ha at mot n e o on the inte al I. Thi p opet of a T- tem can be it e, ed a a gene ali ation of the ame p opet fo pol nomial. Indeed, the famil $\{1, t, t^2, ..., t^n\}$ p o ide the implet α ample of a Cheb he tem.

Alte nati el , a T- tem o e [a, b] ma be de ned b the condition that the n + 1 o de dete minant i non ani hing,

det
$$\begin{array}{cccc} u_0(t_0) & u_0(t_1) & \cdots & u_0(t_n) \\ u_1(t_0) & u_1(t_1) & \cdots & u_1(t_n) \\ \cdots & \cdots & \cdots & \cdots \\ u_n(t_0) & u_n(t_1) & \cdots & u_n(t_n) \end{array} = 0,$$
(3.2)

whene e a $t_0 < t_1 < \cdots < t_n$ b. Without lo of generalit, the determinant can be a med point e.

Let u_0, \ldots, u_n be a T- tem on the interval I. The moment pace \mathcal{M}_{n+1} is the pect to u_0, \ldots, u_n is defined as the et

 $\mathbf{IxIXI}, \boldsymbol{\theta}$ $\mathcal{M}_{n+1} =$

THEOREM 3.5 [12, VI, Sec. 4]. For the periodic T-system (3.5), a point

In thi ection $_{w}$ e tat b ing Ca ath odo ep e entation and Theo em 3.7 f om the p e io. ection, to context $_{w}$ o different Ga ian q ad at e for integral $_{w}$ ith $_{w}$ eight w. The eq ad at e a e exact for trigonometric polynomial of app opriate degree.

We then gene ali e the et pe of q ad at e f the and de elop a ne_{y} famil of Ga ian-t pe q ad at e. Thi famil of q ad at e form la i pa amete i ed b the eigen al e of the Toeplit mat ix.

$$T = \{t_{l-k}\}_{0 \ k, l \ N}. \tag{4.2}$$

Among the ene_k q ad at e form la , onl tho e co e ponding to eigen al e of mall i e a e of p actical inte e t. In fact, the i e of the eigen al e determine the e o of the q ad at e form la. To comp te the eight and node of the e q ad at e, e de elop a ne_k algo ithm hich ma be ie ed a a (majo) modi cation of Algo ithm 2.1. The ne_k algo ithm i de c ibed in Section 5. The main e lt of thi ection a e gathe ed in Theo em 4.1.

We tat b ing Theo em $3.7 to_w$ ite

$$t_{k} = \sum_{j=1}^{N} j e^{i j k} + {}_{0} (-1)^{k}, \quad \text{fo } |k| \quad N,$$
(4.3)

fo niq e poiti e k_{ij} eight j and pha e j in (-1, 1). Then, fo an $A(z) = \sum_{|k|=N} a_k z^k$ in N, the pace of La ent pol nomial of deg ee at mot N, k_{ij} e ha e

$$\int_{-1}^{1} A(e^{i}) W() d = \sum_{|k|=N} a_{k} t_{k} = \sum_{j=1}^{N} {}_{j} A(e^{i-j}) + {}_{0} A(-1), \qquad (4.4)$$

fo niq e po iti e_{xx} eight *j* and node $e^{i j}$.

Alte nati el , ing Ca ath odo ep e entation (2.1) applied to the eq. ence $c_k = t_k$, 1 k = N,

$$\int_{-1}^{1} A(e^{i}) W() d = \sum_{j=1}^{M} {}_{j} A(e^{i} {}_{j}) + (t_{0} - c_{0}) \frac{1}{2} \int_{-1}^{1} A(e^{i}) d$$
$$= \sum_{j=1}^{M} {}_{j} A(e^{i} {}_{j}) + {}^{(N)} \frac{1}{2} \int_{-1}^{1} A(e^{i}) d , \qquad (4.5)$$

the e $c_0 = \sum_{j=1}^{M} j$ and $\{e^{i_j}\}$ a ethe oot of the eigenpol nomial co e ponding to the malle t eigen al. e (N) of T.

Note that (4.5) i again alid fo all A(z) in _N and that the point e_{ij} eight _j and pha e _j in (-1, 1] a e niq. e.

Th , we have t_{y_i} o different q ad at e that ma not coincide. How e e, b con ide ing W() ppoted in ide (-1/2, 1/2), (3.12) implie that w_0 in (4.4) dec ea e exponentiall fat with N and, ince min W() = 0 fo | | 1, we have

$$\lim_{N} \quad {}^{(N)} = 0, \tag{4.6}$$

4.2. Gaussian-Type Quadratures on the Unit Circle

In thi ection v_{k} e p e ent the main e lt of the pape. We de i e never Ga iant pe q ad at e alid fo an eigen al e of the matic. T at he than j t the mallet eigen al e N. The e q ad at e all v_{k} to elect the de i ed acc ac and th , to cont ct acc ac -dependent familie of q ad at e .

The node of the q ad at e in (4.5) a e the oot of the eigenpol nomial co e ponding to the leat eigen al e of T and, beca e of Ca ath odo ep e entation, $g \in knq_{\chi}$ that the e oot a e on the nit ci cle and that the $g \in ight$ a e poili e n mbe. In o gene ali ation, thi tandad p opet for the node and $g \in ight$ i no longe enfoced. Hog e e, $g \in g \in ight$ and $g \in ight$ is no longe enfoced. Hog e e, $g \in g \in ight$ in all example $g \in ight$ e e are easily a e examined, for all mall eigen al e of T, thei negati e g eight a e a ociated $g \in ih$ the node ot ide the pot of the $g \in ight$ and a e compa able in i e $g \in ih$. We belie e thi p opet to hold for a $g \in ight$ is eight . We p o e the follog ing

THEOREM 4.1. Assume that the eigenpolynomial $V^{(s)}(z)$ corresponding to the eigenvalue ^(s) of **T** has distinct, nonzero roots $\{j_j\}_{j=1}^N$. Then there exist numbers $\{w_j\}_{j=1}^N$ such that

(i) For all Laurent polynomials P(z) of degree at most N,

$$\int_{-1}^{1} P(e^{i-t}) w(t) dt = \sum_{j=1}^{N} w_j P(j) + {}^{(s)} \frac{1}{2} \int_{-1}^{1} P(e^{i-t}) dt.$$
(4.12)

(ii) For each root k with $|\mathbf{k}| = 1$, the corresponding weight W_k is a real number and

$$w_{k} = \int_{-1}^{1} |L_{k}^{s}(e^{i t})|^{2} w(t) dt - {}^{(s)}\frac{1}{2} \int_{-1}^{1} |L_{k}^{s}(e^{i t})|^{2} dt, \qquad (4.13)$$

where

$$L_{k}^{s}(z) = \frac{V^{(s)}(z)}{(V^{(s)})(k)(z-k)}$$
(4.14)

is the Lagrange polynomial associated with the root k.

(iii) If (s) is a simple eigenvalue, then for k = 1, ..., N, the weight w_k is nonzero and

$$\frac{1}{W_k} = \sum_{\substack{0 \ l = s \\ l = s}} \frac{V^{(l)}(k) V^{(l)}(k)}{(l) - (s)}, \qquad (4.15)$$

where $V^{(l)}(z) = \overline{V^{(l)}(z^{-1})}$ is the reciprocal polynomial of $V^{(l)}(z)$. In particular, for each k with |k| = 1,

$$\frac{1}{W_k} = \sum_{\substack{0 \ l \ N \\ l = s}} \frac{|V^{(l)}(k)|^2}{(l) - (s)}.$$
(4.16)

(i) If (s) is a simple eigenvalue and all roots k are on the unit circle, then the set $\{w_k\}_{k=1}^N$ contains exactly s positive numbers and N - s negative numbers.

In particular, if s = 0 or s = N, then all w_k are negative or positive, respectively.

Remark 4.1. O. app oach to obtain Ga ian q ad at e doe not e S ego pol nomial and i the efo e b tantiall diffe ent than the one in [11]. We b ie explain the app oach in [11]. Note that (4.9) and (4.10) ho_x that the pol nomial $\{V^{(k)}(z)\}$ a e o thogonal, ith e pect to both the ... al inne p od ct fo t igonomet ic pol nomial and the w eighted inner p od ct w ith w eight w(t). We can all o con t it S ego pol nomial $\{p_k(z)\}$ o thogonal_w ith e pect to w(t) and ch that each $p_k(z)$ hap ecie deg ee k [26]. Fo an k, the oot of $p_k(z)$ a e all in |z| < 1 [8]. 1

S eg1

Fo k ot ide the protof the mean e_{x} e has e ob e ed (Fig. 2, 3, and 5. 8) that

$$\sum_{l: (s)_{>}(l)} |V^{(l)}(k)|^{2}$$

i a con tant of mode ate i e.

The the econd term in (4.17) i O(1/(s)) and the v eight i indeed negative and or ghl of the i e of the eigen all e.

Remark 4.5. Fo the $_{w}$ eight $_{w}$ ith all e 1 in (-1/2, 1/2) and 0 othe $_{w}$ i e, the eigenpol nomial a ethe di c ete PSWF. Fo the effection, $_{w}$ e know that all eigen all e a e imple and that all eigenpol nomial oot a e on the nit ci cle [23].

COROLLARY 4.1. Under the assumptions of Theorem 4.1, it follows that the Toeplitz matrix T in (4.2) has the following representation as a sum of rank-1 Toeplitz matrices,

$$(T - {}^{(s)}I)_{kl} = \sum_{j=1}^{N} w_j \frac{l-k}{j},$$

where (s), W_j , and j are as in (4.12).

2

Thi co olla ho ld be compa ed_{y} ith Rema k 2.3 noting that, in the co olla , ^(s) i not nece a il the leat eigen al e of T. Fo an alte nati e de i ation ee [4].

Proof of Theorem 4.1. (1) Fo $\mathbf{x} = (\mathbf{x}_0, \dots, \mathbf{x}_N) \mathbb{C}^{N+1}$, let de ne

$$A_{\mathbf{x}}(z) = \sum_{l=-L}^{L} x_{l+L} z^{l}, \qquad \text{if } N = 2BLRBPPFRRTSQQQCTTDjTRETTP}$$

<

(3) Let P = N; then $z^N P(z)$ i a pol nomial of at mot deg ee 2N, and ince $z^L V^{(s)}(z)$ i a pol nomial of deg ee N, b E clidean di i ion, the e exit pol nomial q(z) and r(z) of deg ee at mot N and N - 1 ch that

$$z^{N}P(z) = z^{L}V^{(s)}(z)q(z) + r(z).$$

Th ,

$$P(z) = V^{(s)}(z)Q(z) + R(z), \qquad (4.19)$$

 $_{K}$ he e Q(z) $_{L}$ and R(z) hat he form $R(z) = \sum_{k=1}^{N} r_{k} z^{-k}$ and hence

$$\int_{-1}^1 R(\mathrm{e}^{\mathrm{i} t}) \, dt = 0.$$

U ing the fact that $\{V^{(l)}\}_{l=0}^{N}$ i a ba i of $L, \mathbf{k}, \mathbf{e}_{\mathbf{k}}$ ite

$$\overline{Q(\mathbf{e}^{\mathbf{i}} t)} = \sum_{l=0}^{N} d_l V^{(l)}(\mathbf{e}^{\mathbf{i}} t),$$

the e d_l a e ome complex coef cient.

U ing (4.10) and (4.18), we multiple both ide of (4.19) b w(t) and integrate to obtain

$$\int_{-1}^{1} P(e^{i-t}) w(t) dt = N$$

and the , con ide ing k = j, (4.15) follow. Note that we need ${}^{(s)}$ to be imple to g a antee ${}^{(l)} - {}^{(s)} = 0$, l = s in (4.20).

If $_{i_{x}}$ e is the left hand ide of (4.20) a the ent is A_{kj} of a mat is. A and let B be the mat is of ent ie

$$B_{lk} = V^{(l)}(k),$$
 the e 0 $l = N, l = s, \text{ and } 1 = k = N,$ (4.21)

 $_{w}$ e can p o e (4.20) b ho_w ing that BA = B and that B i non ing la.

Fo the latte claim, e imple check that the colemn of B are linear l independent. Indeed, let a_l , l = s, be constant in that

$$\sum_{l=s} a_l V^{(l)}(k) = 0, \quad \text{fo } k = 1, \dots, N.$$

It follow that the pol nomial $P(z) = \sum_{l=s} a_l V^{(l)}(z)$ L hat the N = 2L difference of k. Since P and $V^{(s)}$ has the ame degine and the ame N difference of $P(z) = cV^{(s)}(z)$, for one constant c. B (4.9), $V^{(s)}(z)$ is obtained to all the othe eigenpol nomial and o $a_l = 0$.

To how that BA = B, we to built the $P(z) = V^{(l)}(z)V^{(m)}(z)$ in (4.12) to obtain

$$\int_{-1}^{1} V^{(l)}(e^{i t})$$

FIG. 2. Modi ed eigenpol nomial $e^{-i} t(N/2) V^{(30)}(e^{i} t)$ on the inte al [-1, 1], where N = 97 and $V^{(30)}(e^{i} t)$ is the eigenpol nomial core ponding to the eigenvalue $V^{(30)}(e^{i} t)$ is the eigenpol nomial core ponding to the eigenvalue $V^{(30)}(e^{i} t)$ is the eigenpol nomial core ponding to the eigenvalue $V^{(30)}(e^{i} t)$ is the eigenvalue

EXAMPLE 1. Fi t_{ix} e con ide the eight

$$w(t) = \begin{array}{ccc} 1, & t & [-a, a], \ a & 1/2, \\ 0, & \text{el } \mathbf{e}_{\mathbf{r}} \text{ he } \mathbf{e}. \end{array}$$
(4.24)

Fo thi w eight, the eigenpol nomial $V^{(l)}(e^{it})$ of the $N + 1 \times N + 1$ Toeplit mat is. T a ethe dic ete PSWF [23]. The the eigenpol nomial $V^{(l)}(e^{it})$ has all of it e o on the nit cicle. Mo eo e, it has exact l e o fo t in the intense al (-a, a) and N e o fo t in [-1, 1]. In this example, e has e elected N = 97, a = 1/6, c = 15. We then constant the mat is. T and compute the eigenpol nomial cose ponding to the eigen all e

$$^{(30)} = 9.77306136381891632828 \cdot 10^{-16}. \tag{4.25}$$

The eigenpol nomial $V^{(30)}(e^{it})$ i hq, n in Fig. 2 and 3. Location of the e o on the nit ci cle a e di pla ed in Fig. 4. We then e the q ad at e form la co e ponding to thi eigen al e and tab late the weight in Table I. Note that the weight fo node in ide the inter al [-1/6, 1/6]

FIG.4. Location of the e o on the nit ci cle fo the eigenpol nomial $V^{(30)}$ in Ex ample 1.

	Table of Weights for the Quadratu	III Example 1		
#	Weight	#	Weight	
1	$-1.0328 \cdot 10^{-17}$	50	0.04437549133235668283	
2	$-1.0328 \cdot 10^{-17}$	51	0.04419611220330997984	
3	$-1.0329 \cdot 10^{-17}$	52	0.04382960375644760677	
		53	0.04325984471286061543	
:	:	54	0.04246105337417774134	
33	$-1.3518 \cdot 10^{-17}$	55	0.04139574827622469674	
34	$-1.6030 \cdot 10^{-17}$	56	0.04001188663952018400	
35	0.00580295532842819966	57	0.03823923547752508920	
36	0.01310603337477264417	58	0.03598544514201341779	
37	0.01959211245475268191	59	0.03313334531810570720	
38	0.02506789313597245367	60	0.02954323947353217723	
39	0.02954323947353217723	61	0.02506789313597245367	
40	0.03313334531810570720	62	0.01959211245475268191	
41	0.03598544514201341779	63	0.01310603337477264417	
42	0.03823923547752508920	64	0.00580295532842819966	
43	0.04001188663952018400	65	$-1.6030 \cdot 10^{-17}$	
44	0.04139574827622469674	66	$-1.3518 \cdot 10^{-17}$	
45	0.04246105337417774134			
46	0.04325984471286061543			
47	0.04382960375644760677			
48	0.04419611220330997984			
49	0.04437549133235668283			

TABLE I Table of Weights for the Quadrature Formula with $\lambda^{(30)}$ in Example 1

FIG. 5. Modi ed eigenpol nomial (ee Fig. 2) on the inte al [-1, 1] co e ponding to the eigen al e ⁽²⁸⁾ in Ex ample 2.

EXAMPLE 2. We con ide the $_{xx}$ eight

$$w(t) = \begin{array}{ccc} |t|/a, & t & [-a, a], \ a & 1/2, \\ 0, & \text{el } \mathbf{e}_{\mathbf{x}} \text{ he } \mathbf{e}. \end{array}$$
(4.26)

In this example we have elected N = 61, a = 1/4, c = 15. We then contact the matrix T and compute the eigenpole nomial cose ponding to the eigen all e

$${}^{(28)} = 1.11598931688523706280 \cdot 10^{-14}. \tag{4.27}$$

The eigenpol nomial $V^{(28)}(e^{i-t})$ i ho_x n in Fig. 5 and 6.

EXAMPLE 3. We con ide a non mmet ic we eight

$$w(t) = \begin{array}{ccc} 1 + t/a, & t & [-a, a], \ a & 1/2, \\ 0, & el \ e_{x} \ he \ e. \end{array}$$
(4.28)

FIG. 6. The ame f notion of Fig. 5 on the inte al $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

FIG.7. Modi ed eigenpol nomial (ee Fig. 2) on the inte al [-1, 1] co e ponding to the eigen al e ⁽²⁸⁾ in Ex ample 3.

In this example we have elected N = 61, a = 1/4, c = 15. We then contact the matik T and compute the eigenpole nomial code ponding to the eigen all e

$$^{(28)} = 4.68165338379692121389 \cdot 10^{-15}. \tag{4.29}$$

The eigenpol nomial $V^{(28)}(e^{i-t})$ i how n in Fig. 7 and 8. Altho, gh_{w} e do not hat e a p oof at the moment, it appead that the e i a cla of we eight for which eigenpol nomial coeponding to mall eigen all e mimic the beha is of the dicete PSWF with e pect to location of e o. In Example 3 we know that all e o a e on the nit cicle d e to Theo em 4.2 and 4.3.

In Table II $_{w}$ e ill t at the pe formance of q ad at e for different bandlimit c. Thi table ho ld be compared with [29, Table 1]. The pe formance of both et of q ad at e i a similar Vit the and ad at a similar Table III.

e imila. Yet the eq ad at e a eq ite diffe ent a can be een b compa ing Table III $_{\rm W}$ fbfb[29, Table 5]. Altho gh the acc ac i almot identical, app ox imatel 10

Quadrature reflormance for varying Danamints						
с	# of node	Max.im me o				
20	13	$1.2 \cdot 10^{-7}$				
50	24	$1.1 \cdot 10^{-7}$				
100	41	$1.6 \cdot 10^{-7}$				
200	74	$1.8 \cdot 10^{-7}$				
500	171	$1.4 \cdot 10^{-7}$				
1000	331	$2.4 \cdot 10^{-7}$				
2000	651	$1.2 \cdot 10^{-7}$				
4000	1288	$3.7 \cdot 10^{-7}$				

 TABLE II

 Quadrature Performance for Varying Bandlimits

5. A NEW ALGORITHM FOR CARATHÉODORY REPRESENTATION

5.1. Algorithm 2

We n_{q_x} de c ibe an algo ithm fo comp ting q ad at e ia a Ca ath odo -t pe app oach ba ed on Theo em 4.1. It i ea to ee that, altho gh the e a e imila itie with

-0.99041609489889 -0.95238829377394 -0.89243677566550 -0.81807124037876 -0.73438712699465 -0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	() eight
-0.95238829377394 -0.89243677566550 -0.81807124037876 -0.73438712699465 -0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	2.42209284787E-02
-0.89243677566550 -0.81807124037876 -0.73438712699465 -0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	5.04152570050E-02
-0.81807124037876 -0.73438712699465 -0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	6.82109308489E-02
-0.73438712699465 -0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	7.96841731718E-02
-0.64454148960251 -0.55050369342444 -0.45355265507507 -0.35456254990620	8.71710040243E-02
-0.55050369342444 -0.45355265507507 -0.35456254990620	9.22000859355E-02
-0.45355265507507 -0.35456254990620	9.56668891250E-02
-0.35456254990620	9.80920675810E-02
	9.97843340729E-02
-0.25416536256280	1.00930070892E-01
-0.15284664158549	1.01641529848E-01
-0.05100535080412	1.01982696564E-01
0.05100535080412	1.01982696564E-01
0.15284664158549	1.01641529848E-01
0.25416536256280	1.00930070892E-01
0.35456254990620	9.97843340729E-02
0.45355265507507	9.80920675810E-02
0.55050369342444	9.56668891250E-02
0.64454148960251	9.22000859355E-02
0.73438712699465	8.71710040243E-02
0.81807124037876	7.96841731718E-02
0.89243677566550	6.82109308489E-02
0.95238829377394	5.04152570050E-02
0.99041609489889	2 422002847875 02

TABLE IIIQuadrature Nodes for Exponentials with Maximum Bandlimit c = 50

Pi a enko' method, the co e ponding algo ithm a e b tantiall diffe ent. We plan to add e implication fo ignal p oce ing in a epa ate pape.

(1) Gi en t_k , thet igonomet ic moment of a mea e, we contact the $(N + 1) \times (N + 1)$ Toeplit matik. $T_{N_{W}}$ it element $(T_N)_{kj} = t_{j-k}$. Thi matik i poitie de nite and ha a la gen mbe of mall eigen al e.

(2) Fo a gi en acc. ac , we compute the in e e of the Toeplit mat is $T_N - I$. Fo a elf-adjoint Toeplit mat is, it is find to old e $(T_N - IpPon prj V Q p)$ fleyr If_y e de ne

$$Q(z) = \prod_{k=1}^{M} (z - k) = \sum_{k=0}^{M} q_k z^k,$$
 (5.2)

then, fo an pol nomial P of deg ee at mot M - 1,

$$\frac{P(z)}{Q(z)} = \sum_{r=1}^{M} \frac{P(r)}{Q(r)(z-r)}.$$

Th , fo $|z| < \min |_r|^{-1}$,

$$\frac{z^{M-1}}{z^{M}}\frac{P(z^{-1})}{Q(z^{-1})} = \sum_{r=1}^{M} \frac{P(r)}{Q(r)} \sum_{k=0}^{+} {k \choose r} z^{k} = \sum_{k=0}^{+} \sum_{r=1}^{M} \frac{P(r)}{Q(r)} {k \choose r} z^{k}.$$
 (5.3)

No, choo e P to be the niq. e pol nomial, ith P(r) = r Q

This algo ithm is equivalent to the following factorization of the ine e of the Vande monde matrix in terms of a diagonal matrix, it tan poe V^t , and a triang la Hankel matrix,

,

Thi de c iption i a patic la ca e of the in e ion form lae for L_{v} ne. Vandemonde [21] o clo e to Vande monde mat ice [9, Co olla 2.1, p. 157]. We can tate tho e e lt a (ee [21, p. 548])

					$-y_2$	$-y_{3}$	• • •	1
	X_1		0		$-y_{3}$		1	0
$V^{-1} =$		۰.		V^t	÷			÷
	0		XM					0
					1		0	0

we here the ector $\mathbf{x} = (x_1, \dots, x_M)^t$ and $\mathbf{y} = (y_1, \dots, y_M)^t$ are obtained of

$$Vx = (0, ..., 1)^t$$
 and $V^t y = \begin{bmatrix} M \\ r \end{bmatrix}_{r=1}^M$.

Since *r* at the oot of Q(z), we can take $y = -(q_0, ..., q_{M-1})^t$, and if $B(z) = z^M$ in (5.4), then P(z) = 1 and $x = (1/Q(1), ..., 1/Q(M))^t$.

Remark 5.1. Fo Algo ithm 5.1, $_{w}$ e tobtained the eigen ecto q co e ponding to an eigen al eclo eto . The tep (1) of the Vande monde algo ithm i al ead accompli hed and tep (2) can be performed ing the FFT. F. the mole, the node $_{k}$ belong to the init ci cle and, in the neq all paced fat Fo is t and form, $_{w}$ e has a fat algo ithm to obtain the $_{w}$ eight.

Remark 5.2. A an example, we e this approach to define the oldion of the Vande monde \lim_{x} it hnode at $r = e^{i2} (r-1)/M$, 1 r M. In this case, Q(z) = 1 - j n

Proof of Theorem 6.1. Let

$$u(y) = \int_{-1}^{1} (t) e^{i t y} dt,$$

and, fo each m, de nethe pline of o de 2m - 1 inte polating u(y) at the intege,

$$a(y) = \sum_{k} u(k) L_{2m-1}(y-k) = \int_{-1}^{1} (t) S_{2m-1}(y, e^{i-t}) dt.$$

B (6.7),

$$|u(y) - a(y)| = 3 \int_{-}^{-} (t)|t|^{2m} dt = 3^{-2m} = 1$$

where $1 = \int_{-1}^{1} (t) dt$. We choose m is child as 2m 1 < /4. On the other hand, for each N, Theorem 3.7 allows to eprement the moment u(k), |k| = N,

$$u(k) = \int_{-1}^{1} (t) e^{i kt} dt = \sum_{j=1}^{N} w_j e^{i jk} + w_0 (-1)^k,$$
(6.9)

_k he e

$$W_0 \quad \frac{4}{2 + (2 + \overline{3})^N + (2 - \overline{3})^N}.$$
(6.10)

Let

$$\tilde{u}(y) = \sum_{j=1}^{N} w_j e^{i - jy};$$

then $u(k) = \tilde{u}(k) + w_0 (-1)^k$ fo |k| = N, and de ning

$$\tilde{a}(y) = \sum_{k} \tilde{u}(k) L_{2m-1}(y-k) = \sum_{j=1}^{N} w_j S_{2m-1}(y, e^{i_j}),$$

(6.7) gi e the e timate

$$|\tilde{u}(y) - \tilde{a}(y)| = 3 \sum_{j=1}^{N} w_j |_j|^{2m} = 3^{-2m} (u(0) - w_0) = 3^{-2m} = 1 < \frac{1}{4}.$$

We have how n that u(y) i clo eto a(y) and $\tilde{u}(y)$ i clo eto $\tilde{a}(y)$. To ni h the poof, we need to \log_{α} that $|a(y) - \tilde{a}(y)| < 2$, fo |y| = dN + 1. No_x,

$$\begin{aligned} a(y) - \tilde{a}(y) &= \sum_{|k| = N} w_0 (-1)^k L_{2m-1} (y - k) + \sum_{|k| > N} (u(k) - \tilde{u}(k)) L_{2m-1} (y - k) \\ &= w_0 S_{2m-1} (y, e^i) + \sum_{|k| > N} (u(k) - \tilde{u}(k) - w_0 (-1)^k) L_{2m-1} (y - k) \end{aligned}$$

and

$$|u(k) - \tilde{u}(k) - w_0(-1)^k| = |u(k)| + |\tilde{u}(k)| + w_0 = \sum_{j=0}^N w_j + \sum_{j=1}^N w_j + w_0$$

 $2u(0) = 2 = 1,$

where $e_{w} = e_{w} e_$

Since J_{2n} i an e en f nction, we have

$$v(x) = \int_{-1}^{1} \tilde{w}(\)J_{2n}(cx \)d \ . \tag{7.4}$$

U ing

$$J_{2n}() = \frac{(-1)^n}{n}$$

where

$$\tilde{v}_{j} = \sum_{k=1}^{M} w_{k-j} (k), \qquad (7.13)$$

and the nodes k and the weights W_k are the same as in (1.4).

Fo la ge c, the pect m of F_c can be di ided into the eg o p. The tg o p contain app α imatel 2c/ eigen al e v it hab ol te al e clo eto 1. The a efollor ed b o de log c eigen al e v ho e ab ol te al e make an α ponentiall fatt an ition f om 1 to 0. The thi dg o p con it of α ponentiall deca ing eigen al e that a e clo eto e o. Fo p eci e tatement ee [14, 24, 25, 29].

The efo e, it follow f om (7.12) that, fo the t 2c/ eigenf notion, the integ al in (7.11) a e we ell app oximated b the q ad at e in (7.13). To p o e (7.12), e (7.10), to we ite

$$v_j - \tilde{v}_j = \frac{1}{j} \int_{-1}^{1} \int_{-1}^{1} w(\cdot) e^{ic \cdot t} d - \sum_{k=1}^{M} w_k e^{ic \cdot kt} - j(t) dt.$$
(7.14)

Since |t| = 1, e ha e

$$\left| \int_{-1}^{1} w(\cdot) \mathrm{e}^{\mathrm{i}c \cdot t} \, d - \sum_{k=1}^{M} w_k \mathrm{e}^{\mathrm{i}c \cdot kt} \right| \quad , \tag{7.15}$$

and $j_2 = \text{anid}$ mplie TD0.0052 Tc(.14 41e012)Tj67 8Tj/(i)0.9(m Tm()8.6483 0 TD-94h5)T1 T

In con ide ing bandlimited f. nction $_{\text{W}} e_{\text{W}}$ ill e the PSWF (ee [15, 24], and a more event part $_{c}$ in (7.9) $_{\text{W}}$ it heigen at

 $_{j}j=$

B etting

$$I = W_{I} \sum_{j=0}^{M-1} j(b/c) j(t_{I}), \qquad (8.18)$$

and ob e ing that $|_M|$ and that $|_j| |_M|$ fo j > M, respectively. Both (8.5) and (8.6).

We now contact t_{y_i} or efficient a linear combination of the function $\{e^{ictyx}\}_{l=1}^M$. Fit, let conside the following algebraic eigen all epoblem,

$$\sum_{l=1}^{M} w_l e^{ict_m t_l} \quad j(t_l) = j \quad j(t_m),$$
(8.19)

w here t_l and w_l are the ame a in (8.1). B ol ing (8.19), w end j and $j(t_l)$. We then conside f notion j, j = 1, ..., M, deside ned for an x a

$$j(\mathbf{x}) = \frac{1}{j} \sum_{l=1}^{M} w_l \mathrm{e}^{\mathrm{i} c \mathbf{x} t_l} \quad j(t_l).$$
 (8.20)

The f nction j in (8.20) a e linea combination of the α ponential {hm

364

$$\sum_{j=1}^{M} \overline{w_l} \quad j(t_l) \quad j(t_m) \quad \overline{w_m} = l_m$$
(8.23)

and

$$\sum_{l=1}^{M} j(t_l) w_l \quad j(t_l) = jj.$$
(8.24)

We ha e

$$\int_{-1}^{1} j(t) j(t) dt = \frac{1}{j j} \sum_{l,l=1}^{M} W_{l} W_{l} j(t_{l}) j(t_{l}) \int_{-1}^{1} e^{ict(t_{l}+t_{l})} dt$$
(8.25)

and, f om (8.1), e obtain

$$\left| \int_{-1}^{1} j(t) j(t) dt - \frac{1}{j j} \sum_{l,l=1}^{M} w_{l} w_{l} j(t) j(t) \sum_{k=1}^{M} w_{k} e^{ict_{k}(t_{l}+t_{l})} \right| \frac{2\sum_{k=1}^{M} w_{k}}{|j||j|}.$$
(8.26)

Let n_{q_k} cont ct interpolating bare a linear combination of the exponential $\{e^{iCxt_l}\}_{l=1}^n$. We de nef notion R_k , k = 1, ..., M, a

$$R_k(\mathbf{x}) = \sum_{l=1}^M r_{kl} \mathrm{e}^{\mathrm{i} c \mathbf{x} t_l},\tag{8.27}$$

w he e

$$r_{kl} = \sum_{j=1}^{M} w_{k-j} (t_k) \frac{1}{j-j} (t_l) w_l = \sum_{j=1}^{M} \overline{w_k} q_k^j \frac{1}{j} q_l^j \overline{w_l}.$$
 (8.28)

B di ect e al ation in (8.19) and (8.23), $_{ix}$ e e if that f notion R_k a e interpolating,

$$R_k(t_m) = k_m. \tag{8.29}$$

Let h_{v_k} that the integration of $R_k(t)e^{iat}$, where |a| = c, ield a one-point q ad at e le of acc. ac O().

PROPOSITION 8.3. For |a| = c, let

$$_{k} = \int_{-1}^{1} R_{k}(t) \mathrm{e}^{\mathrm{i}at} dt - w_{k} \mathrm{e}^{\mathrm{i}at_{k}}.$$
(8.30)

Then we have

$$|\mathbf{k}| = 2 \qquad \overline{M} \frac{\max_{k=1,\dots,M} |W_k|}{\min_{k=1,\dots,M} |\mathbf{k}|}^2, \qquad (8.31)$$

where $_2 = \sqrt{\sum_{k=1}^M |k|^2}.$

Proof. U ing (8.27) and (8.29),

$$\sum_{l=1}^{M} r_{kl} \sum_{m=1}^{M} w_m e^{ict_m(t_l + a/c)} = \sum_{m=1}^{M} w_m R_k(t_m) e^{iat_m} = w_k e^{iat_k}, \quad (8.32)$$

and, the efo e, k in (8.30) can be k itten a a mat k - ecto m ltiplication $k = \sum_{l=1}^{M} r_{kl} s_{l}$, the e

$$s_{l} = \int_{-1}^{1} e^{ict(t_{l}+a/c)} dt - \sum_{m=1}^{M} W_{m} e^{ict_{m}(t_{l}+a/c)}.$$
(8.33)

The ineq alit (8.31) i then obtained in the al l^2 -nome timate, taking into account that the matrice q_k^j and q_l^j in (8.28) are othogonal and that, for fraction e^{iax} , where |a| = c, (8.1) implie $|s_l| = \frac{2}{2}$.

We have objected (in computation) that $\max_{k=1,...,M} |w_k| = O(1)$ and $\min_{k=1,...,M} |k| = O(1)$ in (8.31), the ling in 2 = O(1). Next we do is easy to be in the experimental of R_k as a close to being an interpolating basis is for band-limited exponential.

PROPOSITION 8.4. For every b, |b| = c, let us consider the function

$$_{b}(t) = e^{ibt} - \sum_{k=1}^{M} e^{ibt_{k}} R_{k}(t).$$
 (8.34)

Then, for every |a| = c, we have

$$\left| \int_{-1}^{1} b(t) \mathrm{e}^{\mathrm{i}at} \, dt \right| = 1 + M \frac{\max_{k=1,\dots,M} |w_{k}|}{\min_{k=1,\dots,M} |k|} ^{2}.$$
(8.35)

Proof. U ing (8.30), e ha e

$$\int_{-1}^{1} b(t) e^{iat} dt = \int_{-1}^{1} e^{i(b+a)t} dt - \sum_{k=1}^{M} w_k e^{i(b+a)t_k} - \sum_{k=1}^{M} e^{ibt_k} k, \quad (8.36)$$

w he e

$$_{k} = \int_{-1}^{1} R_{k}(t) \mathrm{e}^{\mathrm{i}at} dt - w_{k} \mathrm{e}^{\mathrm{i}at_{k}}.$$
(8.37)

Appl ing (8.1), e obtain

$$\left| \int_{-1}^{1} b(t) e^{iat} dt \right|^{2} + \overline{M} = 2.$$
 (8.38)

The e timate (8.35) then follog f om P opo ition 8.3. \blacksquare

Remark 8.2. U ing the f nction R_k , k = 1, ..., M, on a hie a ch of inte al, it i po ible to cont ct a m lti e ol tion ba i (fo a nite n mbe of cale) imila to m lti_k a elet ba e . We_k ill con ide ch cont ction and it application el e_k he e.

8.1. Examples

Fo they eight

$$(t) = \begin{array}{ccc} 1, & t & [-a, a], \ a & 1/2, \\ 0, & \text{othe}_{w} & \text{i e}, \end{array}$$
(8.39)

w e contect a 30-node q ad at e form la o that (8.1) i at ed_w ith $2 = 10^{-15}$. We 2

FIG. 9. E o in (8.1) fo Example 1.

, he e P_9 i the Legend e pol nomial of deg ee 9. The e th ee f notion a e not pe iodic and $_{\mathbf{v}}$ e e

~

FIG. 11. F notion $g_1(t)$ on the interval [-1, 1].

FIG. 12. Diffe ence $g_1(t) - \bar{g}_1(t)$ on the inte al [-1, 1].

FIG. 13. F notion $g_2(t)$ on the inte al [-1, 1].

FIG. 14. Diffe ence $g_2(t) - \bar{g}_2(t)$ on the inte al [-1, 1].

FIG. 15. F notion $g_3(t)$ on the inte al [-1, 1].

FIG. 16. Diffe ence $g_3(t) - \bar{g}_3(t)$ on the inte al [-1, 1].

exponential deca (ee Fig. 1). For mall eigen all e, the eq ad at e a e of p actical inte e t.

The ema kable feat. e of the eq. ad at e i that the ha e node o t ide the popt of the mean e and, a it to not, the core ponding weight a enegative and mall, o ghl of the i e of the eigen all e. The care core ponding to the mallet eigen all e i eq. i alent to the clarical Ca at hodo e presentation.

A an application of the ne_{k} q ad at e, e_{k} e hq_{k} hq_{k} to app ox imate and integrate e e al (e entiall) bandlimited f notion. We all o has e continued, ing q ad at e node and for a gi en p eci ion, an interpolating basi for bandlimited f notion on an integral.

In the pape k_{i} e made a n mbe of ob e ation fo k_{i} hich k_{i} e do not ha e p oof. Let ni h b tating k_{i} o n e ol ed i e. Fi t, it i de i able to ha e tight niform e timate fo the L -no m of the PSWF (k_{i} ith a x ed bandlimiting con tant) o, ideall, fo the eigenf nction a ociated k_{i} ith mo e gene al k_{i} eight. Second, k_{i} e conject e that in Theo em 4.1, it i not nece a to eq i e di tinct oot fo the eigenpol nomial ince it might be a con eq ence of the eigen al e being imple. We ha e neithe a p oof no a co nte α ample at thi time.

APPENDIX: PROOF OF THEOREM 2.2

We e a techniq e that goe back to [2] (ee [28, Theo em 7.3] and [19, Chapte 5] fo mo e detail $)_{w}$ hich in ol e the Fej ke nel,

$$F_L(x) = \sum_{|k| = L} 1 - \frac{|k|}{L+1} e^{i kx} = \frac{\ln^2\left((L+1)\frac{x}{2}\right)}{(L+1) \ln^2\frac{x}{2}},$$
 (A.1)

fo eal x.

We need the following e_{x} ing e_{y} lt.

THEOREM A.1 [19, Theo em 8, Chapte 5]. For |k| = N, let

$$c_k = \sum_{j=1}^M j z_j^k$$

where j = 0 and $|z_j| = 1$. Then, for all L, 0 = L = N,

$$(L+1) \ \rho \ {}^2_2 \ c^2_0 + 2\sum_{k=1}^L |c_k|^2.$$

Proof. Let $a_k = 1 - |k|/L + 1$ be the coefficient of the Fejke nel F_L and $_{ij}$ ite $z_j = e^{i_j}$. Since j = 0 and $F_L(j) = 0$ for all,

$$\sum_{|k|=L} a_k |c_k|^2 = \sum_{|k|=L} a_k \sum_{j,l} j l \frac{z_j}{z_l}^k$$
$$= \sum_{j,l} j lF_L(j-l) F_L(0) \sum_{j=1}^M \frac{2}{j} = (L+1) \sum_{j=1}^M \frac{2}{j}.$$

The theo em follo, beca e $a_0 = 1$ and $a_k = 1$.

Proof of Theorem 2.2. We the equation (2.1) to extend the denition of c_k a $c_{-k} = \overline{c_k}$ for k = 1, ..., N and $c_0 = \sum_{j=1}^{M} j$. We then dene the Toeplit matrix T_N , $(T_N)_{kj} = (c_{j-k})_0 k_{,j} N$, and the polenomial

$$Q(z) = \prod_{j=1}^{M} (z - e^{i_{j}}) = \sum_{k=0}^{M} q_{k} z^{k}.$$

Then $q = (q_0, ..., q_M, 0, ..., 0)^t$

- 11. W. B. Jone, O. Nj tad, and W. J. Th on, Moment theo, o thogonal pol nomial, q ad at. e, and contin ed faction a ociated with the init ci cle, *Bull. London Math. Soc.* 21 (1989), 113–152.
- 12. S. Ka lin and W. J. St. dden, Tcheb cheff S tem : With Application in Anal i and Stati tic ? P. e and Applied Mathematic , Vol. XV, Inte cience, Ne, Yo k/London/S dne , 1966.
- 13. M. G. K e n and A. A. N del'man, The Ma ko Moment P oblem and Ext emal P oblem ' Ame ican Mathematical Societ, P o idence, RI, 1977. [Idea and p oblem of P. L. Ceb e and A. A. Ma ko and thei f the de elopment, T an l. Math. Monog. Vol. 50.]
- 14. H. J. Landa, The eigen al e beha io of ce tain con ol tion eq ation, Trans. Amer. Math. Soc. 115 (1965), 242 256.
- 15. H. J. Landa and H. O. Pollak, P olate phe oidal v a e f nction, Fo. ie anal i and nce taint II, Bell System Tech. J. 40 (1961), 65. 84.
- 16. H. L., Fa t ol tion of con ent Vande monde linea tem, SIAM J. Matrix Anal. Appl. 15 (1994), 1277. 1289.
- 17. A. A. Ma ko, On the limiting all e of integral in connection with interpolation, *Zap. Imp. Akad. Nauk. Fiz.-Mat. Otd.* 8 (1898). [In R ian.]
- 18. A. A. Ma ko, Selected Pape on Contin ed F action and the Theo of F nction De iating Leat f om Ze o, OGIZ, Mo cq. Lening ad, 1948.
- H. L. Montgome, Ten Lect. e on the Inte face bet een Anal tic N mbe Theo and Ha monic Anal i, p bli hed fo the Confe ence Boa d of the Mathematical Science, Wa hington, DC, 1994.
- 20. V. F. Pi a enko, The et ie al of ha monic f om a co a iance f nction, *Geophys. J. R. Astr. Soc.* 33 (1973), 347. 366.
- 21. K. Rot and Z. Va, n, In e ion form la and fat algo ithm fo L_w ne. Vande monde matice, in P occeeding of the Sixth Confe ence of the International Linea Algeb a Societ (Chemnit, 1996), Vol. 275/276, pp. 537. 549, 1998.
- 22. I. J. Schoenbe g, Ca dinal Spline Inte polation, SIAM, Philadelphia, PA, 1973. Confe ence Boa d of the Mathematical Science Regional Confe ence Se ie in Applied Mathematic, No. 12.
- 23. D. Slepian, P olate phe oidal v a e f nction, Fo ie anal i and nce taint V. The dic ete ca e, Bell System Tech. J. 57 (1978), 1371. 1430.
- 24. D. Slepian and H. O. Pollak, P olate phe oidal_{y,} a efficient of netion, Fo. ie anali i and net aint I. Bell System Tech. J. 40 (1961), 43. 63.
- 25. D. Slepian, Some a mptotic α pan ion fo p olate phe oidal $_{\alpha}$ a e f nction ,