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Classically, integrals with nonintegrable singularities are given meaning by first
defining the integral on test functions that vanish in a neighborhood of the singular-
ity, then extending this definition to test functions that do not. Such a procedure is
known as regularization. Typically, one considers the regularization that is “natural”
in the sense that the sum of two ordinary kernels corresponds to the sum of their
regularizations, the ordinary derivative of a kernel to the derivative of its regulariza-
tion, and the product of the kernel with an infinitely differentiable function to the
regularization of the product [10].

An effective way to arrive at the natural regularization is by analytic continuation
with respect to a complex parameter λ. In this case, the original kernel is replaced
by a family of kernels which are analytic with respect to λ in some domain, say Λ, on
which the kernel is locally integrable. As an example, consider the integral∫ ∞

0

x
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can be computed using FMM-type algorithms [11], [6]. Alternatively, the sum can be
interpreted as an integral with a hypersingular kernel, regularized using our approach,
then evaluated using a fast algorithm. This application is developed in section 6 of
this paper.

Another application is in fluid mechanics where we encounter the projector onto
spaces of divergence-free functions. The kernel of the projector is defined by

Kij(x) = δijδ(x)− Cn

[
δij
|x|n − nxixj

|x|n+2

]
,(3)

where Cn equals 1/2π
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[10]. The classical approach interprets a divergent integral as a functional, or gener-
alized function, operating on a class of test functions. The origin of the mathematical
treatment of generalized functions (distributions) goes back to the theory introduced
by Schwartz (see, e.g., [16]). Such a functional, appropriately constructed, provides
the definition for the classical regularization. We consider a natural regularization
(see [10] or section 1). We note that divergent integrals involving functions with al-
gebraic singularities are ubiquitous in physical applications. These functions increase
as some power of 1/|x − x0|, as x approaches the singular point x0, and divergent
integrals involving them serve as our main examples.

As a systematic method for regularizing such integrals, we may employ the method
of analytic continuation. The main idea is to construct a family of generalized func-
tions fλ analytic with respect to a parameter λ over some open region Λ in the
complex plane. If the functional can be extended analytically to a wider region, say
Λ1 , then we consider the analytic continuation of the functional as a definition of the
generalized function fλ for λ ∈ Λ1.

We illustrate the main points with an example. Let us define fλ = xλ
+, where

xλ
+ =

{
xλ , x > 0,
0 , x ≤ 0 .

For Re(λ) > −1, this generalized function is defined by the convergent integral

(xλ
+, φ) =

∫ ∞

0

xλφ(x) dx ,(5)

where φ(x) belongs to the space of infinitely differentiable test functions with compact
support. Splitting the integral in (5), we redefine the functional as

(xλ
+, φ) =

∫ 1

0

xλ [φ(x)−−0−635←T∞←T{≥∞.∃F∈∞←∞←.∃∃578←053←Tm≥⇐→⇒T|≥/F∞∃←∞←T{≥∃.∃6∈6←0←0∞866←Tm∞←T{≥∞.∃F∈∞←∞←.∃∃578←053←Tm≥⇐→∞m≥⇐→⇒T|≥/F∞∃←∞←T{≥∃.∃6∈6←0←0∞866←8←0∞∞∞765.∃∃578←053←Tm≥⇐→⇒T|≥/F∞∃←∞←T{≥∃.∃6∈6←053ET738G738J←T{|0∞∞3∃8←w←∞0←M←[]0←d∞←∞i←≥∈8{≥0.�⇒T|6.∈∈6←m≥∞∃←-0.�
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in the first case and

(Tf)(x) =

∫ ∞

0

y−2m

[
f(x− y) + f(x+ y)− 2

m−1∑
k=0

f
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We begin by assuming that integrals in (11) and (12) are convergent. With this
assumption we derive a system of equations that allows us to compute the projection
of the operator onto an MRA without evaluating any integrals. The computation
requires knowledge only of the degree of homogeneity and values of the kernelK(x) for
large |x|. If integrals in (11) and (12) are not convergent, then we use this construction
as a definition of multiresolution regularization.

3.1.1. Test functions. The subspaces {Vj} of an MRA (see Appendix B) serve
as the spaces of test functions. Let φ(x) be the scaling function for the MRA. The
functions

{φj,k(x) = 2−j/2φ(2−jx− k) | k ∈ Z}

form an orthonormal basis for the subspace Vj .
We make extensive use of the two-scale difference equation (see Appendix B)

φj,k(x) =
∑

hlφj−1,2k+l(x) .(13)

In what follows, we consider projection of a kernel onto the MRA and show that (13)
leads to a two-scale difference equation for the coefficients of the projection which,
for homogeneous kernels, relates coefficients on the same scale. This relationship,
together with asymptotic behavior of the kernel K(x) for |x| → ∞, provides the
means for obtaining the coefficients of the projection.

Formally applying the operator T to the basis function φj,k we obtain the following
proposition.

Proposition 1. An operator T with kernel homogeneous of degree α scales as

(Tφj,k)(x) = 2−αj(Tφ)j,k(x) .(14)

Proof. Rearranging (12) we have

(Tf)(x) =
1

2π

∫ ∞

−∞
K̂(ξ)

∫ ∞

−∞
f(y)e−iξ(x−y) dy dξ .

Using this expression, we have

(Tφj,k)(x) =
1

2π

∫ ∞

−∞
K̂(ξ)

∫ ∞

−∞
2−j/2φ(2−jy − k)e−iξ(x−y) dy dξ

=
1

2π

∫ ∞

−∞
K̂(ξ)

∫ ∞

−∞
2j/2φ(y)e−i2jξ(2−jx−k−y) dy dξ

=
1

2π

∫ ∞

−∞
K̂(2−jξ)

∫ ∞

−∞
2−j/2φ(y)e−iξ(2−jx−k−y) dy dξ

= 2−αj 2−j/2(Tφ)(2−jx− k) ,

where we used (10a).

3.1.2. Multiresolution representation of the operator. Let us construct a
sequence of operators Tj such that Tj : Vj → Vj and the kernel of Tj has the form

Tj(x, y) =
∑
m

∑
n

tjm−nφj,m(x)φj,n(y) , j ∈ Z,(15)
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where {tjn
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where

am =
∑
k

hkhk+m ,

and {hk} are the coefficients in (13).
Proof. First note that φ(x) =

∑
hlφ−1,l(x) from (13), and this, together with

(14), implies

(Tφ)(x) =
∑
l

hl(Tφ−1,l)(x) = 2α
∑
l

hl(Tφ)−1,l(x) .

Using this expression we have

tn =

∫
φ(x− n)(Tφ)(x) dx

=

∫ ∑
k

hkφ−1,2n+k(x) 2
α

∑
l

hl(Tφ)−1,l(x) dx

= 2α
∑
k

∑
l

hkhl

∫
φ(2x− 2n− k)(Tφ)(2x− l)2 dx

= 2α
∑
m
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Multiresolution regularization is consistent with the classical definition. As pre-
viously noted, the classical regularization alters neither the degree of homogeneity of
the kernel nor its asymptotic behavior at infinity, and we use only these two properties
to uniquely determine the multiresolution regularization. The relationship between
classical and multiresolution regularization is discussed more fully in section 3.4.

There are three steps in our construction.
Step 1. We assume the coefficients {tn} in (18) are known for large |n|. Indeed,

for sufficiently large |n|, the integrals defining tn are convergent since the domain of
integration does not contain the singularity of the kernel K(x). As a practical matter,
we assume the asymptotic condition

tn = F (n) +O

(
1
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It follows that a generalized kernel homogeneous of (fixed) degree k = 0, 1, 2, . . .
has the general form (see, e.g., [10])

K(x) =
c1

xk+1
+

+
c2

xk+1
−

+ C δ(k)(x) ,(26)

where c1, c2, and C are constants and x+ and x− are defined in Appendix A.
If the kernel K(x) is δ(k)(x), then the operator T is simply kth derivative. This

case has been considered in [4], where it was shown that if the wavelet basis has a
sufficient number of vanishing moments, then the two-scale difference equation (25)
reduces to

2−kt = At

plus an additional normalization condition. Thus, in this case, t is the eigenvector of
the matrix A.

We also have the following proposition.
Proposition 5 (see, e.g., [9]
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If t satisfies (25), then we have

2−αt = At + b

=⇒ 2−αxT t = (xTA)t + xT b

=⇒ 0 = xT b ,

which implies (28).

3.3. Asymptotic condition for integral operators. Let us establish the
asymptotic condition (23). The coefficients {tn} are defined formally by

tn =

∫
φ(x− n)(Tφ)(x) dx ,

and thus

t
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where we have used (30). Thus,

tn −K(n) =

∫
K(2M)(x0)

(2M)!
(x− n)2MΦ(x− n) dx ,

where x0 lies between x and n. The assertion (31) now follows upon demonstrating
that the integral on the right, divided by 1/n2M+1+α, is bounded for all sufficiently
large |n|.

Differentiating (10b) repeatedly, we obtain

x2MK(2M)(x) = (α+ 1)(α+ 2) · · · (α+ 2M)K(x) ,

and combining this with the explicit form of K(x) given in (26), we obtain

K(2M)(x0)

(2M)!
=

C

x2M+1+α
0

,

where C is a constant. Thus,

n2M+1+α

∫
K(2M)(x0)

(2M)!
(x− n)2MΦ(x− n) dx = C

∫
(x− n)2M

(x0n−1)
2M+1+α

Φ(x− n) dx ,

which is clearly bounded for |n| sufficiently large.

3.4. Relationship between multiresolution and classical regularization.
In section 3.3 we showed that the coefficients {tn}
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where we have taken into account that Φ is an even function. Hence, as Proposition 8
shows, coefficients in (33) agree within prescribed accuracy with the coefficients used
to initialize the regularization procedure in (23).

To see that coefficients {tn} in (33) satisfy the two-scale difference equation (24),
note that Φ satisfies

Φ(x) =

m0∑
m=−m0

amΦ(2x+m)

(see Appendix B) and, assuming that Φ is sufficiently differentiable, we also have

Φ(2k)(x) = 22k
m0∑

m=−m0

amΦ(2k)(2x+m) for k = 1a
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Let γ(x) denote the dual scaling function, constructed to satisfy∫
β(x) γ(x− n) dx = δn,0 , n ∈ Z .

It follows that the coefficients {tn} in (34) are defined formally by

tn =

∫
γ(x− n)(Tγ)(x) dx .(35)

Since the dual scaling function is not compactly supported, γ(x−n) fails to vanish in a
neighborhood of the singularity of the kernel of T , and the integral in (35) may fail to
converge for all integers n. On the other hand, to start the regularization procedure, it
is necessary to assign values to the coefficients tn for large |n| in a consistent manner.
In addition, the two-scale difference equation satisfied by γ contains infinitely many
fully coupled nonzero coefficients.

Rather than working with γ directly, let us begin instead by considering the
following expression, which is dual to (34):

T0(x, y) =
∑
j

∑
k

τj−kγ(x− j)γ(y − k) ,(36)

where the coefficients {τn} are defined formally by

τn =

∫
β(x− n)(Tβ)(x) dx .(37)

If the coefficients {τn} are available, then, since the dual scaling function γ can be
expressed in terms of β, the coefficients {tn} in (34) can be obtained directly from
them.

Due to compact support of β(x), integrals in (37) are convergent for all suffi-
ciently large |n|, and we are able to compute coefficients τn directly from this integral
expression to provide the necessary starting point for the regularization procedure.
Equation (37) can be expressed as

τn =

∫ M

−M

B(x)K(x+ n) dx ,
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Thus, the regularization procedure described in section 3 can be used, with (39) and
(40) in place of (23) and (24), respectively, to obtain all coefficients {τn}
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(see Appendix A for definition of ξ+ and ξ−). Note that the derivative of the delta
function also satisfies (43) but, as explained in section 3.2.1, we exclude this case
from consideration. If α = 0, 1, 2, . . . , then the case of c1 = (i)α+1π/α! = −c2 in (44)
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6. Fast summation of discrete sums. In this section we develop an applica-
tion, namely, a method for fast summation of discrete sums of the form

gi =

N∑
j=1
j �=i

K(xi − xj)fj ,(48)

where xi ∈ R
n are particle locations, and fi is the charge carried by the ith particle.

The kernel K(x) is a homogeneous function which describes interparticle interactions.
For vector-valued kernels we apply the algorithm in each index.

Particle models are frequently encountered in the computer study of physical
systems. Among numerous examples are N -body simulations in astrophysics and
vortex methods in fluid mechanics. In many such models evaluation of a discrete
sum, which accounts for pairwise interaction between particles, is the most expensive
part of the computation. To account for the pairwise interactions directly requires
O(N2) operations for an N -particle system. In this section, we present an algorithm
to accomplish this in O(N +N logN) operations.

The basic computational problem in particle models may be viewed as that of
computing the value, at each particle location, of the potential field generated by the
particle ensemble, while excluding the self-interaction which is generally infinite. To
provide background, we mention two algorithms, namely, the fast multipole method
(FMM) and the method of local corrections (MLC). The FMM (see, e.g., [11]) has
been highly successful in constructing fast algorithms for a variety of summation
problems and incorporates several ideas which are common to such algorithms. The
MLC [3] was introduced as a vortex method for problems in fluid mechanics, though
the main ideas are applicable in a wider context.

After discussing these two algorithms, we present an algorithm based on mul-
tiresolution regularization (section 3), which we compare to FMM and MLC. Our
approach may be viewed as similar to either of these, depending on how we choose to
apply the multiresolution kernel. Choosing Fourier transform methods produces an
algorithm similar to MLC, but we can also exploit the wavelet decomposition and the
nonstandard form [5], which produces an algorithm similar to FMM.

Remark 7. We note that “modern” FMM (see, e.g., [6]) uses approximations with
exponentials, which significantly improves its efficiency. The incorporation of similar
approximations into our algorithm is in progress and will be reported elsewhere.

For simplicity, we describe the earliest version of FMM. In this approach, a sum
of the form (48) is expanded as a Laurent series, or multipole expansion. At points
distant from the particle ensemble, the expansion takes the form of a rapidly converg-
ing power series, and this far-field potential is well approximated by only a few terms
of the expansion. If the number of terms required to achieve the desired accuracy is
less than the number of particles, then evaluating the multipole expansion requires
less effort than evaluating the sum (48), and a significant increase in computational
speed may be realized. This method of computing the far-field potential is the basic
mechanism for gaining computational efficiency in the FMM.

To exploit this mechanism, a hierarchical subdivision of space into boxes on sev-
eral scales is constructed, which induces a subdivision of the particle ensemble into
subcollections. By introducing several scales into the model, computation of the in-
teraction between different subcollections can be performed on a scale at which they
are well separated, which allows for use of the far-field expansions.

Beginning with the finest scale, a multipole expansion is constructed for each
box at each level of the hierarchy, which represents the far-field potential due to the
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particles in the box. Expansions on coarser levels are obtained by merging expansions
at the next finer level. After completing this step, the far-field interactions can be
computed for each box.

Beginning with the coarsest scale, interactions between well-separated boxes are
computed using the multipole expansions. These contributions are accumulated in
the form of a multipole expansion for each box, which is then translated to the box
subdivisions on the next finer scale. This procedure is repeated until a multipole
expansion has been constructed for each box in the hierarchy, which represents the
far-field potential due to the particle subcollections in all well-separated (exterior)
boxes.

The final step in the FMM is to compute all near-field particle interactions di-
rectly. Since the near-field potential at each particle location involves only a few
neighboring particles, the number of operations required for this step is a constant
times N , where N is the number of particles and the constant is small relative to N .

The MLC also seeks to evaluate a sum of the form (48), which represents the
velocity field induced by an ensemble of point vortices. The velocity field of a point
vortex becomes unbounded near the vortex center but is smooth elsewhere. Thus, in
MLC as in FMM, the basic strategy is to approximate the velocity field of a point
vortex at distant points by polynomials, while using an explicit formula for points of
the field near the vortex center.

MLC begins by constructing an approximation to the velocity field at each point
of an equally spaced grid overlaying the computational domain. This construction
involves solution of a discretized Laplace equation and is extended from the grid to
the vortex centers by a polynomial interpolating function. The number of operations
needed for constructing and evaluating the approximate velocity field is proportional
to M logM , where M is the number of grid points.

Each point vortex is approximated by a radially symmetric function with finite
support, called a “vortex blob,” and the approximation to the velocity field of a vortex
blob agrees closely with the actual velocity at points sufficiently far from the vortex
center, but diverges from the correct velocity near the center. This implies that the
approximation to the total velocity field, evaluated at a vortex center, contains the
correct contribution from distant vortices, but the contribution from nearby vortices
is in error. Since the distance between vortex centers is measured relative to the grid
spacing, one can always rescale to make all vortex centers well separated, but this is
generally inefficient. A more efficient strategy is to correct the initial approximation
at each vortex center to remove errors due to nearby vortices.

To correct the initial approximations, the MLC first computes the contribution
to the approximate velocity field due to nearby vortices, then subtracts this quantity
and adds the correct contribution obtained from an explicit formula. As in the FMM,
this last step involves only a few nearby vortices for each vortex center, and thus the
number of operations required for this step is a constant times N , where N is the
total number of vortex blobs and the constant is small relative to N .

Remark 8. We note that MLC does not obtain an explicit representation of the
correction operator, which is done in our approach (see section 6.4). Such explicit
representations are sometimes useful, especially if the problem is not restricted to
evaluating sums.

6.1. Multiresolution algorithm for fast summation. We use the methods
for regularizing singular and hypersingular operators described above to develop an
algorithm for fast computation of the vector {g1, . . . , gN}, where gi is defined by (48).
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Due to the nature of the kernelK(x) in (48), the potential field of a particle is eas-
ily approximated by smooth functions at points sufficiently distant from the particle
locations, a situation similar to that encountered in our discussion of FMM and MLC
above. The main difference in our approach is that instead of using polynomials to ap-
proximate the far-field of a point charge (or point vortex), we use the multiresolution
regularization of the kernel K on the scale j (see section 3.2), denoted by Tj(x, y).

As in the MLC, the multiresolution algorithm consists of two steps: an approxi-
mation step and a correction step. In the approximation step, we replace the kernel
K(x− y) in (48) by its multiresolution regularization Tj(x, y) and perform the sum-
mation. We choose to carry out the summation using an FFT, and thus the number
of operations required for this step is proportional to M logM , where M is a grid-
size determined by the scale of the projection. Alternatively, this operation could be
carried out using the nonstandard form of the kernel Tj (see [5]).

It is shown in Appendix C that the kernelK(x−y) is well approximated by Tj(x, y)
if and only if the distance |x−y| is sufficiently large. Thus, in replacingK by Tj in (48),
we have introduced significant errors only for interactions between pairs of particles
that are not well separated, while interactions between well-separated particles have
been computed to within the desired precision (analogous to the situation with MLC).

We can always choose a scale of resolution so fine that all pairs of particles in the
ensemble are well separated, since a multiresolution regularization is easily rescaled
(see (16)). However, choosing ever finer scales is generally not an efficient strategy,
because the number of grid points eventually becomes large enough to degrade per-
formance. As in the MLC we perform a second step to correct the errors in the initial
approximation due to particles that are close together. For each particle, we compute
the contribution to the initial approximation due to nearby particles, then subtract
this quantity and add the correct contribution obtained using the original kernel K.
In contrast to the MLC, we obtain an explicit representation of the correction oper-
ator. For each particle, this step involves only a few nearby particles, and thus the
computational cost of this step is a constant times N , where N is the total number
of particles and the constant is small relative to N .

As already mentioned, we could also apply the multiresolution regularization via
the nonstandard form [5], although we do not demonstrate this in the present work.
In this case we would not need a “correction step,” and the algorithm would more
closely resemble the FMM.

Remark 9. We begin by describing the fast summation algorithm in a one-
dimensional setting, and then discuss the higher-dimensional implementation. One-
dimensional formulas are readily transformed into higher-dimensional formulas, using
the tensor product construction (see Appendix B), by simply treating all real scalar
variables as vectors and integer indices as multi-indices.

Although the derivation does not change in two dimensions there is one important
additional feature used: for a wide class of problems, the correction operator has a
low separation rank (up to chosen precision). This allows us to use singular value
decomposition of the coefficient matrix to significantly increase the speed of evaluating
the correction operator.

6.2. “Reverse discretization” of the sum. To make use of the regulariza-
tion technique developed in section 3, we interpret (48) as an integral operator by
interpreting the numbers {gm} as values of a function g(x) defined by

g(x) =

∫
K(x− y)f(y) dy .(49)
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It is therefore necessary to correct only those contributions due to particles that are
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Table 6.1
Implementation in one dimension using B-splines of degree 3.

N Tapr Tcor Talg Tdir E∞
64 0.111E-03 0.832E-04 0.194E-03 0.304E-03 0.67627E-06
128 0.217E-03 0.239E-03 0.456E-03 0.654E-03 0.39181E-07
256 0.463E-03 0.250E-03 0.713E-03 0.184E-02 0.17899E-06
512 0.840E-03 0.491E-03 0.133E-02 0.668E-02 0.17084E-06
1024 0.181E-02 0.938E-03 0.275E-02 0.381E-01 0.11764E-06
2048 0.321E-02 0.201E-02 0.523E-02 0.158E+00 0.36255E-06
4096 0.743E-02 0.412E-02 0.116E-01 0.640E+00 0.29900E-06
8192 0.162E-01 0.796E-02 0.241E-01 0.256E+01 0.65214E-06

Table 6.2
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To approximate the kernel K(x − x′, y − y′), we construct the multiresolution
regularization of K,

Tj(x, y, x
′, y′) =

∑
k,l

φjk(x)φjl(y)
∑
k′,l′

tjk−k′,l−l′φjk′(x′)φjl′(y
′) ,(60)

as described in section 3, using the two-dimensional two-scale difference equation (22)
together with known asymptotic behavior ofK(x, y) as max{|x|, |y|} → ∞. Analogous
to the one-dimensional estimate (54), there exists a constant Bj such that, for each
ε > 0, we have

|K(x− x′, y − y′)− Tj(x, y, x
′, y′)| < ε(61)

if max{|x− x′|, |y − y′|} > Bj (see Appendix C).

6.6.1. Approximation step. The initial approximations have the form

gj,m =

N∑
n=1

Tj(xm, ym, xn, yn)fn , m = 0, 1, . . . , N .(62)

Rearranging the sums, we obtain

gj,m =
∑
k,l

ŝjk,lφj,k(xm)φj,l(ym) ,(63)

where

ŝjk,l =
∑
k′,l′

tjk−k′,l−l′ s
j
k′,l′(64)

and

sjk′,l′ =

N∑
n=1

fnφj,k′(xn)φj,l′(yn) .(65)

The operation indicated in (64) is accomplished using a two-dimensional FFT.

6.6.2. Correction step. As explained above it is necessary to correct errors in
the initial approximation due to particles that are too close together at the chosen scale
of resolution j. To accomplish this, we subtract the erroneous contribution from the
nearby particles and add the correct contribution. Thus, it is necessary to evaluate the
multiresolution kernel Tj(x, y, x

′, y′) in the region defined by max{|x−x′|, |y− y′|} ≤
Bj . For this purpose we utilize the trigonometric expansion of Tj , as obtained in
Appendix D. In two dimensions, the (already truncated) form is

2j(α+2)Tj(xm, ym, xn, yn)

= I0,0 + 2

3∑
k=1

Ik,0 cos(2
−jkπ(xm + xn)) + 2

3∑
l=1

I0,l cos(2
−j lπ(ym + yn))(66)

+ 4

3∑
k=1

3∑
l=1

Ik,l cos(2
−jkπ(xm + xn)) cos(2

−j lπ(ym + yn)),
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where

Ik,l = Ik,l
(
2−
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expression (76b), which converges in the strip −2m − 1 < Re(λ) < −2m + 1. In
particular, we have

(x−2m−1, φ) =

∫ ∞

0

x−2m−1

[
φ(x)− φ(−x)− 2

m∑
k=1

φ(2k−1)(0)

(2k − 1)!
x2k−1

]
dx ,

(x−2m, φ) =

∫ ∞

0

x−2m

[
φ(x) + φ(−x)− 2

m∑
k=1

φ(2k−2)(0)

(2k − 2)!
x2k−2

]
dx .
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B.2. Tensor product construction. To construct an MRA for L2(Rn), the
simplest method is to form the tensor product of an MRA for L2(R) (see, e.g., [9],
[15]). For example, if {φ(x− k) | k ∈ Z} is a basis for V0
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where M is the number of vanishing moments in the MRA. (This result depends on
orthonormality of functions {φ(x − k)}.) Function Φ satisfies a two-scale difference
equation,

Φ(x) =
∑
m

amΦ(2x−m) ,(90)

where the coefficients {am
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The coefficients {tjm−n} in (95) are defined formally by

tjm−n =

∫ ∫
K(u− v)φj,m(u)φj,n(v) du dv ,(98)

and from (97) it follows that the integral in (98) converges if |m− n| > 2s. It follows
also that, for a given (x, y), the summation in (95) involves a finite number of terms.
Let us impose the following condition:

|x− y| ≥ 2j(4s) + δ , ∃ δ > 0 .(99)

Then all coefficients tjm−n involved in the summation are defined by a convergent
integral in (98).

For the remainder of the proof let the point (x, y) be fixed and chosen such that
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where ξ is between u and x, and η is between v and y, we obtain

|Tj(x, y)−K(x− y)| ≤ C1 sup
|K(M)(ξ − η)|

M !
,

where

C1 =

∫ ∫ ∣∣∣[(u− v)− (x− y)]
M
Pj(x, u)Pj(
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where

Φn(z) =
1
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