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us to obtain linear scaling in thenumber of atoms. The efficiency of the linear scaling
method depends on electron locality, but even when some electrons are poorly localized,
most are well localized, so we can represent the non-local portion of the density matrix
efficiently using singular value decompositions of appropriate pieces. We demonstrate our
basic approach on a one-dimensional example and indicate considerations for two- and
three- dimensional implementations.

For the case where the number of eigenfunctions included is large (in many other appli-
cations of spectral projectors) we present a multilevel partitioned representation of matrices
(a technique due to Rokhlin and his collaborators [13–15]) which is based on singular value
decompositions of submatrices. We explain the computational gain using the Christoffel–
Darboux summation formula (see also [32]). We also present a method for partitioning
the spectrum for the case where different sets of eigenfunctions require different bases for
efficient representation.

Specifically, in Section 2 we define the matrix sign function and present the polynomial
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2.1. Recursive Construction

In this paper we use a polynomial recursion (also used in, e.g., [11, 12]) to compute
sign(T). The algorithm consists of the following steps:

T0 D T/kTk2
TkC1 D

¡
3Tk ¡ T3

k

¢–
2, k D 0, 1, . . . .

(9)

Other polynomials may be used in place of the one above; see [12] for a discussion of the
various choices.

We first demonstrate thatTk ! sign(T) in (9). Observe that ifU is the unitary transform
that diagonalizesT0, then it also diagonalizes allTk for k D 1, 2, . . .. Thus, we need only
show that the scalar iterationλkC1 D (3λk ¡ λ3

k)/2 converges to sign(λ0), provided that
¡1• λ0• 1. On the interval [¡1, 1] the function(3λ ¡ λ3)/2 is increasing and has the
fixed pointsλ
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Remark 2.3. The iteration step in (9) is equivalent to the “purification transform” of
McWeeny [17], where it is used as a correction in a variational method rather than as a
recursion.

Remark 2.4. The following recursion (see, e.g., [10]) also provides an algorithm for
computing sign(T) for the matrixT ,

T0 D T
(11)

TkC1 D
¡
Tk C T¡1

k

¢–
2, k D 0, 1, . . . ,

whereT¡1
k is a generalized inverse (ifT has a null space). We avoid this formulation because

it requires computing an inverse, and does not preserve the ordering of the eigenvalues. We
also point to Appendix B where the spectral projector is expressed as an integral of Green’s
function.

3. TOOLS FOR SPARSE REPRESENTATION

In this section we develop several representations for fast matrix–matrix multiplications
within the recursion (9). We present these ideas briefly in this section, and defer estimates
and proofs to Appendix A. We consider only one-dimensional problems here and mention
considerations for multiple dimensions in Section 5.2.

The representations of this section are critical to our approach since they control the
speed of the algorithm. We describe an adapted discretization of the Hamiltonian for a
single atom in Section 3.1. In Section 3.2 we consider the sparsity of the spectral projector
for several atoms and introduce additional structure into the representation. In Section 3.3
we demonstrate a method suitable for projectors wheren, the number of eigenfunctions of
interest, is large (e.g., above the Fermi level).

3.1. The Adapted Representation of the Hamiltonian

In order to construct the spectral projector using the sign function iteration (9) we must
first convert the true HamiltonianH D ¡r2 C V(x) to matrix form. This can be done by
either sampling in space or representing the operator in some basis. We will represent it on a
basis because this will allow us access to both the space and the spatial-frequency domains.
We will consider only orthonormal bases. We have observed that (quite naturally) the way
in which the initial discretization is handled has a strong effect.

The representation ofH on some finite set of basis functions can be viewed as a projection
of H onto a subspace. We will call this projectorP a “rough projector” and apply the iteration
(9) to the matrixH̃ D PHP. The projectorP identifies the subspace spanned by the firstn
eigenfunctions. In discretizing the origional Hamiltonian, we would like to project it on a
subspace that (i) includes the subspace indicated byP with controlled accuracy, and (ii) is
not significantly larger than the subspace indicated byP. Formally, these conditions mean
kPP ¡ Pk < ε for some desired accuracyε, and the operatorP
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Note thatP does not need to “resolve” or “capture”H itself, but onlyP. Other eigenvalues
and eigenvectors ofH will be changed byP, but an orthogonal projection does not change
thesignof the eigenvalues. See Section A.1 for a more detailed discussion of the effect of
a rough projector.

We chooseP to be a projection onto a collection of wavelets. The design ofP is based
on the potentialV(x) and eigenvalue boundµ only. The size ofµ¡ V(x) determines the
maximal “instantaneous frequency” and therefore the necessary sampling rate (i.e., wavelet
subspace). The derivative ofV(x) determines how much “frequency spillage” we will
have, and thus how wellP can matchP locally. We will characterize this subspace using
an instantaneous frequency perspective. In Section A.2 we provide a rigorous justification
using the local cosine basis (see, e.g., [18, 19]) and we indicate below how to translate this
to the wavelet basis.

The eigenfunctionψn(x)satisfies (by definition)ψ 00n (x)D¡(λn¡V(x))ψn(x). The WKB
(quasi-classical) approximation predicts behavior like

exp

µ
§i
Z xp

λn ¡ V(t) dt

¶
(12)

and thus instantaneous frequency
p
λn ¡ V(x). Intuitively this says thatψn “lives” on the

curveξ D νn(x) D
p
λn ¡ V(x) in the x £ ξ (space£ spatial-frequency) phase plane.

On the phase plane a local cosine basis element is viewed as a rectangle withx-support
on its base interval, shifted inξ by its frequency, with area a constant (depending on the
normalization). Intuitively, those boxes that intersectν(x) should correspond to local cosine
elements that yield significant coefficients (see Fig. 1).

The important conclusion from the estimates in Section A.2 is that for potentials of the
form ¡C/jxj (in one dimension), the number of local cosine basis functions needed to
constructP is proportional to

p
C … n, wheren is the rank ofP. We can thus represent

FIG. 1. Schematic of instantaneous frequency plots for severalψk with potentialV(x) D ¡C/x, overlaid
with the local cosine subdivision for the subspace used forP.
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FIG. 2. Schematic of instantaneous frequency plots forψk overlaid with a wavelet phase plane.

H̃ as anO(n£ n)matrix in this adapted local cosine coordinate system and computeP in
O(n3) time using the recursion (9). For a single atom this result may already be sufficient
for the fast computation ofP, sincen is never very large. In the following sections we
give further representation techniques to deal with multiple atoms and the case where the
number of eigenfunctions is large.

To translate the above results to a wavelet representation, we need only note that the
wavelet partition of the phase plane is compatible with the type of partition desired forP.
In particular, high frequency is associated with small spatial support and high change in
frequency (see Fig. 2). We therefore can representH̃ and P asO(n £ n) matrices in an
adapted wavelet subspace. The constant involved will depend on the choice of wavelet and
the desired precisionε. The dependence onε for a wavelet expansion is generally log(1/ε),
yielding matrices of sizeO(n log(1/ε)£ n log(1/ε)).

In what follows we use the standard form of the matrices, which is equivalent to simply
changing our system of coordinates into the wavelet basis, and note that it is also possible
to use the non-standard form of [20, 21].

Remark 3.1. One could constructP using the atomic orbitals. At low precision this
should perform well, since the atomic orbitals match the eigenfunctions well. At higher
precision, however, atomic orbitals are a poor choice because they do not allow local
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operations. The constant has been significantly reduced, but may still be too large for some
problems. The fact that wavelets are well suited to representing wave functions has been
noted in [25].

If the number of nuclei in interaction range (d/s) is large, we will need an additional
technique. The blockBi j is formed by eigenfunctions that have a significant component
near both nucleii and j . The number of entries inBi j is determined by the highest energy
eigenfunctionψn. This eigenfunction has the slowest rate of decay, and so we expect the
off-diagonal blocks to remain full (O(n£ n)), and decay (perhaps slowly) in amplitude as
ji ¡ j j increases. Lower energy eigenfunctions, however, will decay much more rapidly,
so Bi j , although full, will becomelow rank (up to ε) long beforeji ¡ j j> d/s. We can
represent these blocks using the singular value decomposition (SVD) and obtain a much
more efficient representation. This technique takes advantage of the fact that core electrons
interact only at short distances.

3.3. Partitioned SVD Representations

As the number of eigenfuctionsn increases, the cost of computation using wavelet com-
pression may increase liken3. In physical systems the number of eigenfunctions per atom is
never very large, and the localization of the eigenfunctions keeps the representation sparse.
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FIG. 3. Partitioned SVD.

Dividing this byanC1(x ¡ y) reveals the top term in the sum, and we are left to prove the
same theorem withn replaced byn¡ 1. The theorem follows by induction.
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orthogonal polynomials by changes of variables. In particular it holds for the Chebyshev
polynomialsTn(x), which under the change of variablesx D cosθ becomeTn(cosθ) D
cos(nθ)
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4. NUMERICAL EXAMPLES

In this section we test our methods on a simple one-dimensional example. The first
question we wish to answer is how many iterations are required for convergence, as a function
of the condition number of the initial matrix. Second we test how well our wavelet and PSVD
representations compare to direct (sparse) matrix multiplications. This comparison is done
for both high and lowµ (equivalentlyn).

To determine the number of iterations required we consider the operatorT , a 512£ 512
discretization of¡r2 with periodic boundary conditions. Since the smallest eigenvalue of
T is 0,T0 D
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FIG. 5. (Example 4.1) Ratio of the number of significant coefficients above the threshold 10¡8 to the total
number of matrix elements during the cubic sign recursion (9).

this rough projector, we have eliminated the bump in the number of wavelet coefficients in
the middle of the iteration. The fourth plot is similar to the third, except the rough projector
is set to level 10¡5, givingP rank 133. The number of coefficients is cut further, without an
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FIG. 6. (Example 4.1) Relative error in the density generated in Fig. 5.

FIG. 7. (Example 4.2) Ratio of the number of significant coefficients above the threshold 10¡8 to the total
number of matrix elements during the recursion (9) forµ capturing 70 eigenvectors.
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FIG. 8. (Example 4.2) Relative error in the density generated in Fig. 7.

the PSVD still performs well. In Fig. 8 we plot the error in the density for this example.
We choseµ between two eigenvalues that are paired, so the band gap is small andκ … 106.
We achieve slightly better performance than in Fig. 6 simply because we measure relative
error.

5. EXTENSIONS

5.1. Partitioning the Spectrum
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The case whereµ>0 can be treated by applying an appropriate shift and then using the
construction above.

Such partitioning is useful if for some reason computingP0(x, y) and thenP00(x, y) is
easier than simply computingPn(x, y). Within the Kohn–Sham scheme, the lower parts of
the spectrum, which correspond to densities which are localized around the nucleus, should
converge more quickly under the DFT-LDA iteration than other parts of the spectrum. We
may then be able to fixP0 early in the iteration process and save some work. This idea is sim-
ilar to the use of pseudopotentials except that we have not modified the potential, but instead
the entire operator. We note thatH 0 is no longer of the form “Laplacian plus potential.”

5.2. Multidimensional Implementations

Efficient implementation of both wavelet and PSVD representations in multiple dimen-
sions requires careful attention. The straightforward generalization, although available, is
not efficient.

In Example 4.1 we demonstrated that choosing a good initial adapted representation was
crucial for efficiency. In multidimensional problems the treatment of the singularities (e.g.,
the Coulomb potential of the ions) will also become critical. We plan to use multiwavelets as
a tool of discretization in multiple dimensions. These bases allow us to position boxes so that
the point singularities of the ionic potential coincide with the corners of the parallelograms
where the multiwavelets are supported. At these corners the multiwavelets are discontinuous
already and so should be able to match the singularity with fewer scales than any overlapping
wavelet basis. A paper on this topic which is a follow-up to [27, 28] is in preparation [29].

In addition, in a separate work [30] it is shown that for a large class of operators the
difference between the operator and its projection on a coarse scale can be represented
as a (small) sum of separable operators. This approach is shown to produce an efficient
generalization for multidimensional implementation in, e.g., wavelet bases. We plan to use
these results as a way of implementing the constructions of this paper in multiple dimensions.

6. CONCLUSIONS

We have presented a fast algorithm for the construction of a spectral projector. This
algorithm allows us to compute the density matrix, as used in, e.g., the Kohn–Sham iteration,
and so obtain the electron density. We computed the spectral projector by constructing the
matrix sign function through a simple polynomial recursion. We have presented several
techniques for fast computation within this recursion, using bases with controlled space–
spatial frequency localization.

Since spectral projectors appear in many contexts, we expect many additional applications
of our approach. In particular we expect this basic approach to work in molecular dynamics
simulations and homogenized wave propagation. We note that the details of the appropriate
representation to maintain sparsity may vary.

APPENDIX A: MATHEMATICAL ESTIMATES

A.1. The Effect of a “Rough” Projection

In this section we examine the effect of the rough projector from Section 3.1. We show
that the signs of the eigenvalues are preserved. This fact is closely related to the law of
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THEOREM A.1. Let I be an interval of length l, ψi the normalized eigenfunction as
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fails only if (jV (k)(x)j)1/(kC1)/k increases as a function ofk, which is not the case in our
example.

One conclusion we may draw is that the sampling rate remains finite as we approach the
singularity, as long as we only wish to captureψn up toε. The second, more important, con-
clusion is thatP is representable in a local cosine subspace with dimension proportional top

C. The number of eigenfunctionsn is also proportional to
p

C (by, e.g., WKB estimates),
so there is no fundamental obstruction toP closely matchingP.

Proof of Theorem A.1.We will suppose our interval is [0, l ], so

›
ψn, bI e

p
I

fi D Z l

0
ψn(x)b(x/ l )

r
1

l
exp

µ
i
xpπ

l

¶
dx. (28)

Integrating twice by parts, we obtain

D
Z l

0

£
(b00(x/ l )/ l 2)ψn(x)C 2(b0(x)/ l )ψ 0n(x)C b(x)ψ 00n (x)

⁄r1

l

exp(i xpπ/ l )

¡(pπ/ l )2
dx. (29)
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A.3. Spectral Equivalence

For the techniques in Section 3.3 to be valid in our case, we need estimates to show that
¡r2 and¡r2CV(x) are “spectrally equivalent.” In this section we give estimates showing
to what degree this is true. Interpreting these results as good or bad will depend on the
particular situation.

Theorem A.1 gives decay of local cosine coefficients likejl 2V⁄¡(pπ)2j¡1. In Section A.2
we used this for smallV⁄ and largep, but it can also be used for largeV⁄ and smallp. It is
slightly more convenient to compute the length of the setfand large
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FIG. 9. The contourC, composed ofCI andCII .

where the contourC is shown in Fig. 9,T is a self-adjoint matrix, and at no point on the
contourC is the matrixT ¡ z I singular.

We can write the integral (37) as

¡ 1

2π i

Z
C
(T ¡ z I)¡1 dzD ¡ 1

2π i
U ⁄
µZ

C
(D ¡ z I)¡1

¶
dzU, (38)

whereU is a unitary transformation which diagonalizesT andD is a diagonal matrix such
thatT D U ⁄DU . The integral (37) may then be evaluated element-by-element onD, as in

¡ 1

2π i

Z
C
(λ¡ z)¡1 dz, (39)

whereλ is a diagonal element ofD.
We define the parts of the contourC as in Fig. 9. The vertical part,CI , runs fromµ¡ i M

toµC i M . The part labeledCII is a circular arc running thn1.zbeledC
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