
MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH

BOUNDARY CONDITIONS ON SIMPLE DOMAINS

GREGORY BEYLKIN*, GEORGE FANN+, ROBERT J. HARRISON+,
CHRISTOPHER KURCZ*, LUCAS MONZÓN*

Abstract. We develop a multiresolution representation of a class of integral operators satisfying
boundary conditions on simple domains in order to construct fast algorithms for their application.
We also elucidate some delicate theoretical issues related to the construction of periodic Green’s
functions for Poisson’s equation.

By applying the method of images to the non-standard form of the free space operator, we
obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On
the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some
freedom in their definition. We use the limit of square partial sums as a definition of the limit and
obtain a systematic, simple approach to the construction (in any dimension) of periodized operators
with sparse non-standard forms.

We illustrate the results on several examples in dimensions one and three: the Hilbert transform,
the projector on divergence free functions, the non-oscillatory Helmholtz Green’s function and the
Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green’s
function which is not a convolution.

Using a short sum of decaying Gaussians to approximate periodic Green’s functions, we arrive at
fast algorithms for their application. We further show that the results obtained for operators with
periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary
conditions.

1. Introduction

The primary goal of this paper is to develop a multiresolution representation of a class of integral
operators satisfying boundary conditions on simple domains and construct fast algorithms for their
application. As a practical consequence of our approach, we show that a minor modification of the
fast algorithms for free space operators in [24, 9, 6], yields a fast algorithm (of the same complexity)
for the operator satisfying boundary conditions.
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In our approach we apply the method of images not to the free space operator itself but to its non-
standard form. The non-standard form splits the action of the operator to an infinite set of scales
and, for appropriate classes of operators, yields a sparse representation [7]. For operators with
kernels whose partial derivatives decay faster than the kernel itself (e.g., the Calderon-Zygmund
operators), the non-standard form is sparse on all scales, except for the coarsest scale. We use the
rapid decay of the coefficients of the non-standard form to construct its periodized version and to
show that, on all scales except possibly the coarsest scale, the lattice sums converge absolutely and
require no further analysis. On the coarsest scale, for some of the coefficients, the lattice sums may
be only conditionally convergent and, thus, allow for some freedom in their definition. For such
coefficients a summation convention needs to be specified and we choose the limit of square partial
sums for that purpose. In this way, we obtain a systematic, simple approach to the construction (in
any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on
several examples in dimensions one and three: the Hilbert transform, the projector on divergence
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for Green’s functions with boundary conditions is essentially the same as that for the free space
case. Indeed, we show that the operators effectively coincide on the wavelet scales which are those
dominating the computational cost.

We start in Section 2 by introducing the non-standard form for convolution operators in dimension
d = 1 using multiwavelet bases [1, 2, 3]. In this case only one term may require an appropriate
interpretation and we illustrate this using the Hilbert transform as an example. In Section 3 we
construct the non-standard form in dimension d = 3 for operators with periodic boundary condi-
tions. As examples, we then analyze the projector on divergence free functions, the non-oscillatory
Helmholtz Green’s function and, in Section 4, the Poisson Green’s function. In Section 5 we describe
a fast algorithm for applying these operators using separated representations. In Section 6, we con-
struct Green’s functions which incorporate Dirichlet, Neumann, or mixed boundary conditions on
simple domains. Finally, we provide some closing remarks in Section 7 and collect most proofs in
the appendix.

2. Preliminaries

2.1. Multiresolution and non-standard form. In this section we review a multiresolution ap-
proach for representing and applying operators in one dimension. Since we use multiwavelets as the
underlying basis for the multiresolution representation, we briefly describe their properties (see also
[1, 3, 9, 6]). We then turn to the non-standard form of operators in multiwavelet bases and describe
a class of operators which becomes effectively sparse in this representation (see also [7, 6]). We
then construct an operator with periodic boundary conditions by applying the method of images
to the components of the non-standard form and illustrate the result with the Hilbert transform.
The notation used below deviates slightly from usual wavelet notation, however, its introduction
facilitates the higher dimensional description presented in later sections.

2.1.1. Multiwavelets. Let Pm

[a,b] denote the space of polynomials of degree less than m restricted to

the interval [a, b]. Let us define subspaces

Vj =
⋃

l∈Z
Pm

[2−j l,2−j(l+1)] ⊂ L2(R)

for j ∈ N, where N denotes all non-negative integers. These subspaces are nested

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · ·

and
⋃∞

j=0 Vj = L2(R). We select scaling functions to form an orthonormal basis of Vj, ψ
j;l
i;0(x) =

2j/2ψi;0(2
jx− l), j ∈ N, l ∈ Z, where

(1) ψi;0(x) =

{√
2i+ 1Pi(2x− 1), x ∈ [0, 1]

0, otherwise
, i ∈ {0, . . . ,m − 1},

and Pi are the i-th order Legendre polynomials. We will need the cross-correlation functions of the
scaling functions,

(2) Φii′(x) =

∫

R

ψi;0(x+ y)ψi′;0(y)dy,

where supp(Φii′) ⊂ [−1, 1] for i, i′ ∈ {0, . . . ,m − 1}. Due to orthogonality of the scaling functions
in (1), these functions have vanishing moments (see [9, §2.2]),

(3)

∫

R

Φii′(x)x
kdx = 0 for i+ i′ ≥ 1, and 0 ≤ k ≤ i+ i′ − 1.
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We define the wavelet subspaces Wj as

Wj ⊕ Vj = Vj+1,

so that

Vj+1 = V0 ⊕W0 ⊕ · · · ⊕Wj .

We denote the multiwavelets, an orthonormal basis of Wj , as ψj;l
i;1 for i ∈ {0, . . . ,m − 1} and l ∈ Z.

We do not need an explicit expression for the multiwavelets and only use their vanishing moments
property,

(4)

∫

R

ψj,l
i;1(x)x

kdx = 0 for i, k = 0, . . . ,m − 1, l ∈ Z, and j ∈ N,

which follows from orthogonality of the subspaces Wj and Vj. Also we need the cross-correlation
functions of the wavelets,

(5) Φii′;ss′(x
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2.1.3. Example in one dimension. Let K be the kernel of the convolution operator

(9) (Tf) (x) =

∫

R

K(x− y)f(y)dy.
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the entries outside the band may be discarded resulting in a representation of the operator in terms
of banded matrices and, therefore, yielding a fast algorithm for its application (see e.g. [7]).

2.2. Operators with periodic boundary conditions. Given a convolution operator T of the
form (9), the method of images is the standard approach to construct an associated operator T
satisfying a periodic boundary condition. Specifically,

(13) T f(x) =
∫ 1

0

[
∑

n∈Z
K(x− y + n)

]
f(y)dy,

where (T f) (x) = (T f) (x+1) for x ∈ [0, 1]
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Remark 3.
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3.1. Non-standard form in dimension three. Let us consider integral operators given by a
convolution kernel in dimension d = 3,

(17) (Tf) (x) =

∫

R3

K(x − y)f(y)dy

for x,y ∈ R3. The basis functions (both scaling and multiwavelet) are the tensor product of the
one-dimensional basis functions described in Section 2.1.1 and are denoted as

(18) Ψ
j;l
i;s(x) = ψj;l1

i1;s1
(x1)ψ

j;l2
i2;s2

(x2)ψ
j;l3
i3;s3

(x3),

where x = (x1, x2, x3), j ∈ N, l = (l1, l2, l3) ∈ Z3, i = (i1, i2, i3) ∈ {0, . . . ,m−1}3 and s = (s1, s2, s3)

with s1, s2, s3 = 0 or 1. Thus, in this notation, the scaling functions correspond to Ψ
j;l
i;0. We also

use the cross-correlation functions of the wavelets,

(19) Φii′;ss′(
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Remark.
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where ι, ι′ = 1, 2, 3 and διι′ denotes the Kronecker delta function (see e.g. [17] for more details). This
operator may be obtained using the Riesz transform, see the derivation in, e.g., [25]. Observing that
the first term in (27) is the identity operator (if ι = ι′), it is sufficient to consider the non-standard
forms of the free space operators [9],

(28) Tιι′f(x) =
1

4π
p.v.

∫

R3

(
διι′

‖x − y‖32
−
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3.4. Non-oscillatory Helmholtz Green’s function with periodic boundary conditions.

Let us consider the problem
(
−∆+ µ2

)
u(x) = f(x)(30)

u(x+ n) = u(x)(31)

for x ∈ [0, 1]3, µ > 0, n ∈ Z3, and f ∈ L2([0, 1]3). Although this problem is easily handled by the
standard method of images, we apply our approach in order to show that the limit as µ → 0 does
not cover all possible constructions available for the case µ = 0.

We consider the solution to (30) and (31)

u(x) =

∫

[0,1]3
Gµ

H(x − y)f(y)dy,

where Gµ
H satisfies

(
−∆x + µ
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See Appendix 8.6 for the proof. The formulas derived in the proof may be used to explicitly compute
other elements of the non-standard form.

4. Poisson Green’s function with periodic boundary conditions

In this section we consider the problem

−∆u(x) = f(x)(34)

u(x+ n) = u(x)(35)

for x ∈ [0, 1]3, n ∈ Z3 and f ∈ L2([0, 1]3) satisfying the mean-free condition

(36)

∫

[0,1]3
f(x)dx = 0.
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(ii) For |i+ i′| ≥ 3, the lattice sums defining the scaling part elements of the periodized non-standard
form (25),

(40) T 0;0
ii′;00 =

1

4π

∑

n∈Z3

∫

[−1,1]3

Φii′(x)

‖x+ n‖2
dx,

converge absolutely.

(iii) For 1 ≤ |i+ i′| ≤ 2, the lattice sums in (39) for the scaling part of the periodized non-standard
form

(41) T 0;0
ii′;00 =

1

4π
lim

N→∞

∑

‖n‖∞≤N

∫

[−1,1]3

Φii′(x)

‖x+ n‖2
dx,

converge conditionally.

(iv) For |i + i′| = 0, with the summation convention (iii), the lattice sum for the element T 0;0
00;00

diverges. By setting it to zero, T 0;0
00;00 = 0, we effectively restrict the domain of the periodized

operator to the class of functions with zero mean
∫
[0,1]3 f(x)dx = 0.

See Appendix 8.4 for the proof.

Remark 9. The fact that only a few elements of the non-standard form are given by conditionally
convergent sums permits a characterization of all possible versions of the periodic Poisson Green’s
function. Our approach offers a unified way of constructing such Green’s functions and, perhaps, ex-
plains difficulties encountered in their usual interpretation. Some of these different periodic Green’s
functions may be found in the literature [19, 15, 30]. The fact that in computing the periodic
Poisson Green’s function one encounters conditionally convergent sums is well known. Assigning
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multi-indices i′ = (0, 0, 2), i′ = (2, 0, 0) and i′ = (0, 0, 2). Hence, we obtain
∫

[0,1]3
u(x)dx = − 1

36

∫

[0,1]3
f(x1, x2, x3) [P2(2x1 − 1) + P2(2x2 − 1) + P2(2x3 − 1)] dx1dx2dx3.

Expanding P2(2t − 1) = 1 − 6t+ 6t2 and using that f is mean-free, the last equation is equivalent
to

(45)

∫

[0,1]3
u(x)dx =

1

6

∫

[0,1]3
f(x1, x2, x3)

(
x1 + x2 + x3 − x21 − x22 − x23

)
dx1dx2dx3.

This last condition is also derived in the literature (but with more restrictive assumptions on the
function f). See, e.g., [5, Eq. 29], [26, Eq. 38] or [29, Eq. 8].

Further analysis of (45) leads us to consider the weak formulation of the problem (46)-(47),
∫

[0,1]3
∇u(x) · ∇ϕ(x) dx =

∫

[0,
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Since the periodicity of G0 yields
∫

[0,1]3
G0(x − y) dx =

∫

[0,1]3
G0(x) dx

we also have that the solution u is mean-free. We now modify G0 as to obtain a Green’s function
G yielding the boundary condition (49). Note that for y = (y1, y2, y3) ∈ [0, 1]3,

(52)

∫

∂([0,1]3)
G0(x − y) dx = 2

3∑

j=1

∑

nj 6=0

e−2πinjyj

4π2n2j
=

3∑

j=1

(y2j − yj + 1/6) = −p0(y) +
1

2
,

where p0 is the polynomial in (48). Let’s define for x,y ∈ [0, 1]3

G(x,y) = G0(x − y) +G1(x,y),

where

G1(x,y) = −1

6


‖x‖2 + ‖y‖2 − 2

3∑

j=1

xjyj




which we extend periodically as G1(x+n,y) = G1(x,y) andG1
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where β and µ are non-negative parameters, both not simultaneously zero, and pγ is a polynomial,

γ = 1, 2, 3. We note that both, ‖x‖−β
2 and e−µ‖x‖2 , or ‖x‖−β

2 e−µ‖x‖2 , may be efficiently approxi-
mated by short sums of Gaussians for any user selected accuracy ǫ and distance from the origin δ
(see Theorem 6 and Proposition 8 of [14]). In fact, the number
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Thus, in order to compute T̃ j;l−l′

ii′;ss′ , it is sufficient to evaluate one dimensional integrals with the

cross-correlations of the scaling functions (see (20)),

t̃j+1;l−l′

ii′;00;m;γ =

∫

R

pγ(x)e
−τmx2

Φii′(2
j+1x+ l − l′)dx

and then apply the quadrature mirror filters for the multiwavelets (see [3, eq 3.25a 3.25b 3.25c

3.25d]) to construct all the coefficients t̃j;l−l′

ii′;ss′;m;γ for s = 11, 10, 01. We note that to apply the

operator we may also use the modified non-standard form [6] which only requires the projection of
the operator onto cross-correlation functions of the scaling functions.

Applying the method of images to (60), we obtain the coefficients of the non-standard form of the
operator with periodic boundary conditions,

(62) T̃ j;l−l′

ii′;ss′ =
M∑

m=1

wmt̃
j;l1−l′

1

i1i′1;s1s
′
1
;m;1

t̃
j;l2−l′

2

i2i′2;s2s
′
2
;m;2

t̃
j;l3−l′

3

i3i′3;s3s
′
3
;m;3

,

where in each direction

(63) t̃
j;l−l′

ii′;ss′;m;γ =
∑

n∈Z
t̃j;l−l′+2jn
ii′;ss′;m;γ ,

with t̃j;l−l′+2jn
ii′;ss′;m;γ defined in (61). Clearly (62) is in separated form with the same separation rank

as its free space counterpart (60) and, moreover, (63) provides a simple recipe for computing its
components.

Remark 14. By first computing the blocks T̃ j;l−l′+2jn
ii′;ss′ of the non-standard form of the free space

approximation K̃, we have a simple way to evaluate via (63) the corresponding blocks T̃ j;l−l′

ii′;ss′ for

the approximation of the periodized operator. Since the norm of the blocks t̃j;l−l′+2jn
ii′;ss′;m;γ in (63)

decays rapidly with n, only a few terms participate in the sum for a given accuracy. In fact, on
finer scales (large j) only the term with n = 0 needs to be kept. We may estimate the error∣∣∣T j;l−l′

ii′;ss′ − T̃ j;l−l′

ii′;ss′

∣∣∣, where T j;l−l′

ii′;ss′ are the blocks of the non-standard form of the original operator

K, by using Proposition 4 together with the estimates for
∣∣∣T j;l−l′+2jn

ii′;ss′ − T̃ j;l−l′+2jn
ii′;ss′

∣∣∣ given in [9,

Theorem 4]. However, an exception to using (63) for computing operator blocks has to be made for
conditionally convergent elements on the coarsest scale whose definition reqiures special attention
(see Proposition 10).

Remark 15. Our approach applies to any Bravais lattice. We note that for a non-rectangular lattice
the non-standard form does not separate along each coordinate and further approximations are
required.

6. Dirichlet, Neumann and mixed boundary conditions

Using the results for the periodic case, we now have the necessary tools to efficiently apply operators
with Dirichlet, Neumann or mixed boundary conditions on simple domains. We note that although
the resulting integral operators are no longer convolutions, they have a simple algebraic structure
and, as a result, the algorithm for applying these operators is similar to those described in the
previous section.
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As an example, let us consider the problem
(
−∆+ µ2

)
u(x) = f(x) for x ∈ D(64)

u(x) = 0 for x ∈ ∂D,(65)

where µ ≥ 0 and D = [−1/2, 1/2]3 . A solution to (64) which satisfies (65) is given by

u(x) =

∫

D
Gµ(x,y)f(y)dy,

where Gµ satisfies
(
−∆x + µ2

)
Gµ(x,y) = δ(x − y)(66)

Gµ(x,y) = 0 for x ∈ ∂D(67)

and ∆x denotes the Laplacian with respect to x. Let us first consider the case where µ > 0. Even
though the integral operator Gµ is not a convolution, it may be written as

Gµ(x,y) = Gµ
H

(
x1 − y1

2
,
x2 − y2

2
,
x3 − y3

2

)
−Gµ

H

(
x1 − y1

2
,
x2 − y2

2
,
x3 + y3 + 1

2

)

+ Gµ
H

(
x1 − y1

2
,
x2 + y2 + 1

2
,
x3 + y3 + 1

2

)
−Gµ

H

(
x1 − y1

2
,
x2 + y2 + 1

2
,
x3 − y3

2

)

+ Gµ
H

(
x1 + y1 + 1

2
,
x2 − y2

2
,
x3 + y3 + 1

2

)
−Gµ

H

(
x1 + y1 + 1

2
,
x2 − y2

2
,
x3 − y3

2

)

+ Gµ
H

(
x1 + y1 + 1

2
,
x2 + y2 + 1

2
,
x3 − y3

2

)
−Gµ

H

(
x1 + y1 + 1

2
,
x2 + y2 + 1

2
,
x3 + y3 + 1

2

)
,(68)

where the periodic Green’s function Gµ
H is constructed as in Section 3.4 to satisfy

(69)
1

2

(
−∆x + 4µ2

)
Gµ

H(x − y) = δ(x − y).

The changes in the equation relative to (66) are due to the way variables appear in (68) and to the
dimension of the space, d = 3. Since Gµ

H has period one and is even in each variable, for x ∈ ∂D
the terms in (68) cancel each other so that Gµ satisfies the Dirichlet boundary condition (67). For
x 6= y inside D, we have

(
−∆x + µ2

)
Gµ(x,y) = 0 since each of the eight terms in (68) vanishes.

The only singularity is at x
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and

+t̃
j;l+l′+2j(n+1)
ii′;ss′;m =

∫ 1

0

∫ 1

0
e−τm(x+y+1+n)2ψj,l′

i′,s′(y)ψ
j,l
i,s(x)dxdy

for j ∈ N, n ∈ Z, l, l′ ∈ {0, . . . , 2j − 1}, i, i′ ∈ {0, . . . ,m − 1}. The integrals −t̃
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Using Hölder’s inequality and ‖ψj;l
i;0‖L
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8.3. Proof of Proposition 4.

Proof. It is enough to prove the result for ‖l − l′‖2 ≥ 2
√
d + 1 since the general result follows by
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where we used
∥∥∥Ψj;l

i;s

∥∥∥
L2(Rd)

= 1 and

∫

Il

∣∣(x − x0)
2α
∣∣ dx =

d∏

r=1

∫ 2−j(lr+1)

2−j lr

(
t− 2−j(lr +

1

2
)

)2αr

dt

=
d∏

r=1

2−2αrj−j

∫ 1

0

(
u− 1

2

)2αr

du = 2−dj
d∏

r=1

2−2αr(j+1)

2αr + 1
.

Combining these estimates we obtain the result with

Cj = 2β
∑

|α|=ν

cα

α!
√
2α+ 1

2−j(d−β).

It remains to prove the estimate for

(88) T 0;l−l′

ii′;00 =

∫

[−1,1]d
K(x+ l − l′)Φii′(x)dx.

First assume |i + i′| ≥ 1. This time we use the Taylor expansion of K(· + l − l′) centered at the
origin, so that

K(x+ l − l′) =
∑

|α|≤ν−1

1

α!
DαK(l − l′)xα +

∑

|α|=ν

1

α!
DαK(l − l′ + θx)xα,

where ν = min {|i+ i′|,m} ≥ 1 and θ ∈ [0, 1]. Substituting into (88) and using that Φii′ have
vanishing moments (3), we observe that all terms with |α| ≤ ν − 1 do vanish. For the remainder
term in the Taylor expansion, using (23),

∣∣∣T 0;l−l′

ii′;00

∣∣∣ ≤
∑

|α|=ν

cα
α!

∫

[−1,1]d

|xαΦii′(x)|
‖l − l′ + θx‖|α|+β

2

dx ≤
∑

|α|=ν

cαaα
α!

2|α|+β

(1 + ‖l − l′‖2)|α|+β
,

where aν = maxi,i′,|α|=ν

{∫
[−1,1]d |xαΦii′(x)| dx

}
and we estimated�
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which, changing variables xj 7→ xj − nj on each j = 1, 2, 3 yields

1

4π
lim

N→∞

∫

[−N,N+1]3

1

‖x‖2
dx =

1

4π

∫

R3

1

‖x‖2
dx = ∞.

Thus, the summation convention (41) yields a non-finite element T 0;0
00;00. To deal with this situation,

we simply set the value of this element to zero which is equivalent to restrict the domain of the
operator to mean-free functions. �

8.5. Auxiliary results for the computation of non-standard form elements. The vanishing
moments and symmetries of the cross-correlation functions (20) allow us to explicitly compute
elements of the periodized non-standard forms. The relevant properties and how we use them to
compute these elements are captured on the following results.

Lemma 19. Let ϕ be a bounded function with odd symmetry about 1/2

(95) ϕ(1 − t) = −ϕ(t), 0 ≤ t ≤ 1.

Then
N∑

n=−N

∫ 1

0
ϕ(t)h(t + n)dt =

∫ 1

0
ϕ(t)h(t+N)dt,

for any even function h such that the integrals exist.

Proof. Let I be

I =

N∑

n=−N

∫ 1

0
ϕ(t)h(t + n)dt.

Splitting the sum in non-negative and negative values of n and changing variables t 7→ 1− t on the
latter, the assumption (95) yields

I =

N∑

n=0

∫ 1

0
ϕ(t)h(t + n)dt−

N∑

n=1

∫ 1

0
ϕ(t)h(1 − t− n)dt

=
N∑

n=0

∫ 1

0
ϕ(t)h(t + n)dt−

N∑

n=1

∫ 1

0
ϕ(t)h(t + n− 1)dt =

∫ 1

0
ϕ(t)h(t +N)dt,

because h is even. �

Lemma 20. Let ϕj , 1 ≤ j ≤ 3, be three bounded functions on [−1, 1] such that one of them, e.g.
ϕ1, is odd and let G(x1, x2, x3) be a locally integrable function, even on each variable. Then

(96) lim
N→∞

∑

‖n‖∞≤N

∫

[−1,1]3
ϕ1(x1)ϕ2(x2)ϕ3(x3)G(x1 + n1, x2 + n2, x3 + n3)dx = 0

Proof. Let C denote a constant whose value may change along the derivation. Observe that

∑

‖n‖∞≤N

∫

[−1,1]3
ϕ1(x1)ϕ2(x2)ϕ3(x3)G(x1 + n1, x2 + n2, x3 + n3)dx
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over [0, 1] and [−1, 0] and changing variables x1 → −x1 in the latter yields

∑

|n1|≤N

∫ 1

−1
ϕ1(x1)g(x1 + n1)dx1 =

∑

|n1|≤N

∫ 1

0
ϕ1(x1)g(x1 + n1)dx1

−
∑

|n1|≤N

∫ 1

0
ϕ1(x1)g(−x1 + n1)dx1.

Since in the last term the sum over n1 is the same as the sum over −n1 and g is an even function,
the two terms in the previous equation cancel each other and we obtain the result. �

Proposition 21. Let ϕj , 1 ≤ j ≤ 3, denote three bounded functions on [0, 1]. It holds that

A: If ϕ1 is odd about 1/2, then
(97)

lim
N→∞

∑

‖n‖∞≤N

∫

[0,1]3

ϕ1(x1)ϕ2(x2)ϕ3(x3)

‖x+ n‖2
dx = −2π

3

(∫ 1

0
tϕ1(t) dt

)(∫ 1

0
ϕ2(t) dt

)(∫ 1

0
ϕ3(t) dt

)
.

B: If ϕ1 is even about 1/2 and mean free, then

(98) lim
N→∞

∑

‖n‖∞≤N

∫

[0,1]3

ϕ1(x1)

‖x+ n‖2
dx =

4π

3

∫ 1

0
t2ϕ1(t) dt.

C: If ϕ1 is mean free, then

(99) lim
N→∞

∑

‖n‖∞≤N

∫

[0,1]3

ϕ1(x1)

‖x+ n‖2
dx = −2π

∫ 1

0
tϕ1(t) dt+

4π

3

∫ 1

0
t2ϕ1(t) dt.

For simplicity, the proposition is stated for the Poisson kernel G(x) = ‖x‖−1, but similar results
hold for any radially symmetric kernel with enough decay at infinity and, thus, to linear combination
of such kernels. However, due to the slow decay of the Poisson kernel, the proof of Proposition 21
is more challenging than the one for kernels with faster decay at infinity.

Proof. We use the same notation as in the proof of Lemma 20. Note that, the same argument given
in that proof shows that

(100) S+
N lim

N
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Hence, substituting (103) into (100) yields

(104) S+
N =

∑

|n2|≤N,|n3|≤N

∫

[0,1]3

(x1 +N)ϕ
[1]
1 (x1)ϕ2(x2)ϕ3(x3)
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and hence I
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the term corresponding to n3 = N in S+
N leads to a sequence which tends to 0 as N → ∞. Setting

n2 = N leads to a similar estimate yielding

S+
∞ = lim

N→∞
SN ,

where

SN =
N∑

n1=−N

N−1∑

n2=−N

N−1∑

n3=−N

∫

[−1,1]3

ϕ(x1)
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and, since limN→∞ aN (N + 1) = limN→∞ aN (−N) = 0,

lim
N→∞

SN = 4

∫ 1

0
t2ϕ(t)dt lim

N→∞
1

2

N∑

n=−N

d2

dx2
aN (n).

The result follows observing that

(113)
1

2

N∑

n=−N

d2

dx2
aN (n) =

1

N

N∑

n=−N

1

(1 +
(
n
N

)2
)
√

2 +
(
n
N

)2

it is a Riemann Sum in the interval [−1, 1] for the continuous function 1
(1+x2)

√
2+x2

. As N → ∞,

the sum (113) converges to ∫ 1

−1

1

(1 + x2)
√
2 + x2

dx =
π

3
.

For part C, given a mean free function ϕ1 we write it as ϕ1(t) = ϕodd(t) + ϕeven(t), where

(114) ϕodd(t) =
ϕ1(t) − ϕ1(1 − t)

2
and ϕeven(t) =

ϕ1(t) + ϕ1(1 − t)

2
.

Since both ϕ1 and ϕodd are mean free, the same holds for ϕeven. Using parts A and B and the
definitions of ϕodd and ϕeven, the result follows adding

− 2

3π

∫ 1

0
tϕodd(t)dt = − 2

3π

∫ 1

0

(
t− 1

2

)
ϕ1(t)dt = − 2

3π

∫ 1

0
t ϕ1(t)dt

and
4

3π

∫ 1

0
t2ϕeven(t)dt =

4

3π

∫ 1

0

(
t2 − t+

1

2

)
ϕ1(t)dt =

4

3π

∫ 1

0

(
t2 − t

)
ϕ1(t)dt.

�

8.6. Proof of Proposition 7.

Proof. Since from (72) we have that Φi′i(x) = (−1)i+i′Φii′(x), it is enough to show the result for

T 0;0
ii′;00.

By (26) and (22),

T 0;0
ii′;00(µ) = lim

N→∞

∑

‖n‖∞≤N

T 0;n
ii′;00(µ) = lim

N→∞

∑

‖n‖∞≤N

∫

[−1,1]3
Gµ

free(x+n)Φi1i′1
(x1)Φi2i′2

(x2)Φi3i′3
(x3)dx.

Therefore, Lemma 20 implies that T 0;0
ii′;00(µ) vanishes whenever any of the functions Φij i′j

, j = 1, 2, 3

is odd, which, by (73), is the case if ij and ij′ have different parity. We have proved part (ii). Next
consider the case of ij and ij′ having the same parity for all j. In this case all the functions
Φiji′j

, j = 1, 2, 3 are even and

T 0;0
ii′;00(µ) = 8 lim

N→∞

∑

‖n‖∞≤N

∫

[0,1]3
Gµ

free(x+ n)Φi1i′1
(x1)Φi2i′2

(x2)Φi3i′3
(x3)dx

= 8

∫

[0,1]3
Φi1i′1

(x1)Φi2i′2
(x2)Φi3i′3

(x3)G
µ
H(x)dx.



MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS 33

For part (iii), by symmetry of the kernel, it is sufficient to consider only one of the elements listed
on each of the three cases. The case i = (1, 1, 0) and i′ = (0, 0, 0)
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